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Coupling and Decoupling: Towards Temporal
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Abstract—3D object detection has garnered significant atten-
tion within the academic community, primarily due to its broad
utility in domains such as autonomous driving and robotics. Prior
research efforts have predominantly concentrated on leveraging
temporal contextual information embedded within sequential
data to enhance the current feature representations. However,
a notable limitation of these endeavors lies in their inadequate
treatment of the inherent noise present within historical se-
quences, thereby constraining the efficiency of fusion methods. In
this paper, we propose a new temporal feedback network, named
TFNet, to model and correct the temporal noise by designing a
coupling-decoupling mechanism. Central to our approach are two
distinct modules: (i) Foreground Feature Enhancement, which
amplifies sparse instance details across temporal frames, thereby
furnishing essential local information priors for subsequent fu-
sion; and (ii) Coupling-Decoupling Feature Interaction, designed
to first aggregate temporal contextual information and then
disentangle fusion features into frame-specific representations.
Leveraging a feedback strategy, this module can adaptively
enhance useful information and eliminate noise within individual
frame features. Empirical evaluations conducted on the nuScenes
benchmark demonstrate the effectiveness of TFNet, achieving the
new state-of-the-art performance without any bells and whistles.

Index Terms—3D object detection, feedback,

coupling-decoupling.

temporal

I. INTRODUCTION

ECENTLY, with the development of autonomous driving
technology, 3D object detection [|]-[4] has received
increasing attention as a crucial component. By directly out-
putting the 3D coordinates and bounding boxes of surrounding
objects, 3D object detection provides more valuable informa-
tion for downstream tasks such as object tracking and distance
measurement. Moreover, compared to visual images, 3D point
clouds contain richer geometric information, making them
well-suited for 3D detection tasks. However, due to the sparsity
and unordered characteristic of point clouds, LiDAR-based 3D
object detection still faces challenges, such as difficulty in
effectively detecting objects when they are too far away and
the point cloud becomes too sparse.
To address these challenges, some methods try to fuse
the 2D image to provide more rich appearance information.
However, the misalignment between different modalities poses
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Fig. 1. (a). Previous coupling method. (b). Our proposed coupling-decoupling
method. Compared to the coupling method, the coupling-decoupling method
has a feedback mechanism to eliminate the noise. Here we use r to
represent the feature flow.

challenges in the fusion process. Meanwhile, in some poorly
lit scenarios, image data may not provide sufficient useful
information. Therefore, there is enormous research value in
studying the single-modal approach of pure point clouds.
To provide more additional LiDAR information, temporal
3D detection [5]-[8] has been proposed to compensate for
the shortcomings of single-frame detection. By exploring the
temporal relationships between frames, prior information from
historical frames can be learned and utilized to compensate
for insufficient information in the current frame, leading
to the improvement of detection performance. For example,
ConvLSTM [5] proposes an LSTM module to recursively
combine the previous memory feature with the current to
enhance the current representation. 3DVID [6] utilizes GRU
to aggregate the previous temporal information to enhance
the current frame feature. Furthermore, 3D-MAN [7] proposes
an attention-based proposal-level fusion to fuse the previous
frames’ proposals into the current. MGTANet [8] utilizes
motion information to align the other frame features to the
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Fig. 2. The noise information from the past frame conflicts with the current
frame, leading to inaccurate detection or false positive detection.

current frame and uses deformable attention [9] to fuse these
aligned features.

Although these methods have achieved significant detection
performance, they can be regarded as a feature coupling fusion
paradigm that aggregates multiple features into single fused
features, as shown in Figure 1(a). However, this paradigm
lacks feedback correction for each single-frame feature based
on the fusion feature, thus limiting the effectiveness of cou-
pling. As shown in Figure 2(a), in autonomous driving, if the
detector fails to detect the object in the past frame, the error
information ‘there is no object.” within the past feature would
be coupled and propagated to the current frame. This noise
could lead to situations where objects that should have been
detected are missed or inaccurately detected. Meanwhile, in
Figure 2(b), when an object moves too much, information
about “there is an object” from past features can actually
become noise, leading to false positives in the current frame.

To overcome the aforementioned issue, in this paper, we
propose a new temporal 3D object detector named TFNet
(Temporal Feedback Network). Different from previous meth-
ods, we introduce the feedback mechanisms by leveraging
a “coupling-decoupling” strategy to adjust and correct the
single frame features, as shown in Figure 1(b). After obtaining
the temporal feature through feature coupling, we further
decouple the temporal feature by combining it with each
frame feature, completing the feedback of temporal infor-
mation for each single frame feature. Through this temporal
feedback mechanism, each frame can selectively adjust its
features according to its own situation, correct interference
and compensate for insufficiency, leading to better temporal
fusion. For Figure 2(a), we could feedback the current frame
information of the detected object to the past frame through
our “coupling-decoupling” strategy. This temporal feedback
process eliminates noise and enables the object to be detected
in the past frame, enhancing the past frame feature and further
improving the detection accuracy of the current frame through
temporal fusion.

Following the guidance principle of the “coupling-

decoupling” strategy, we propose a Coupling-Decoupling Fea-
ture Interaction module to fuse the multi-frame features in
local and global feature scopes. In both scopes, the temporal
information is first learned through multi-frame feature aggre-
gation, and then decomposed back into multi-frame features.
By feeding back the learned temporal information and com-
bining it with the actual situation of each frame, the noise
information could be eliminated and useful information could
be enhanced. Meanwhile, the local-to-global fusion strategy
also leads to more comprehensive multi-frame feature fusion.
Moreover, to alleviate the sparsity of point clouds and better
capture the local information, we also propose a Foreground
Feature Enhancement module to enhance local foreground
features across frames. Through proposing dynamic group at-
tention, the proposed module enhances the local representation
no matter the directions and size of objects.

Overall, our contributions could be summarized as follows:

e We propose a Foreground Feature Enhancement mod-
ule to enhance sparse multi-frame foreground features
through dynamic aggregation.

o We propose a “coupling-decoupling” fusion strategy and
introduce the feedback mechanism for better multi-frame
feature fusion in temporal detection.

o We propose several modules to fuse multi-frame features
from local to global, and further propose a new temporal
detector named TFNet.

o« We achieve new state-of-the-art 3D object detection
performance on the nuScenes benchmark. Besides, the
proposed modules can be plug-and-play in single-frame
frameworks, demonstrating the versatility ability of our
method.

II. RELATED WORK
A. Single Frame 3D Object Detection

F-PointNet [10] is the first work attempting to detect 3D
objects with point clouds in autonomous driving scenarios.
However, they still depend on a 2D detector to obtain a local
point cloud frustum. To get rid of images, PointRCNN [2]
directly inputs all point clouds of the scenarios and detects
3D objects by a two-stage RCNN-like framework. Further-
more, STD [11] introduces spherical anchors and proposes
PointsPool to generate compact representations for proposals.
FARP-Net [12] adaptively aggregates local-global features and
designs a relation-aware proposal network for high-quality 3D
object detection. However, limited by the unordered structure
of point clouds, point-based methods usually suffer from
slow running speeds. Differently, VoxelNet [13] converts the
points into 3D voxel grids and uses 3D CNN-based network
to detect objects, leading to a faster running speed. Based
on that, SECOND [3] further utilizes sparse convolution to
improve running efficiency. Moreover, CenterPoint [14] uses
the CenterHead-manner to regress with sparse convolution
backbone and achieve a good balance between accuracy and
speed. SP-Det [15] presents a saliency prediction-based 3D
object detector to improve the robustness for the sparsity.
VPFNet [16] additionally fuses the LiDAR and stereo data by
designing virtual point to bridge the resolution gap between
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Fig. 3.

Tllustration of the proposed TFNet. After multi-frame feature extraction, we first sample and enhance the multi-frame foreground features in the

Foreground Feature Enhancement (FFE) module. Then, in the Coupling-Decoupling Feature Interaction (CDFI) module, we perform multi-frame feature
interaction in both local and global scopes by the proposed Local Coupling Decoupling (LCD) and Global Coupling Decoupling (GCD) respectively. We use

the fused current frame feature for final detection.

the two modalities. However, compared to raw point clouds,
the voxel representation inevitably loses some information.
Therefore, PV-RCNN [4] takes both advantages of points and
voxels, and proposes Rol-grid pooling to refine the proposals.
In addition, some work focuses on improving the effectiveness
of point or voxel representations. For example, IA-SSD [17]
studies the efficiency problem of point-based methods and
reduces the computational cost by sampling foreground points.
Focal conv [18] enhances the capability of sparse convolu-
tion by making feature sparsity learnable with position-wise
importance prediction. LargeKernel3D [19] proposes spatial-
wise partition convolution for 3D large kernels to improve
the efficiency of large-kernel convolution. Recently, with the
rise of transformer [20], some works [21]-[24] try to use
the attention mechanism to better capture information from
point cloud. Inspired by Swin [25], SST [22] proposes a
window-based attention backbone to replace the common used
sparse convolution, achieving better performances. Moreover,
VoTr [21] and VoxSet [23] integrate the attention into back-
bone with voxel manner. In this paper, we propose the coupling
and decoupling modules that could be plug-and-play in most
single-frame detection methods.

B. Multi Frames 3D Object Detection

Nowadays, several temporal-based 3D detectors have been
proposed to improve detection performance by exploring tem-
poral information from history frames. ConvLSTM [5] extracts
each frame feature with a U-Net style 3D sparse convolution
network and proposes an LSTM module to combine the
current feature with the hidden features. To better model the
spatial-temporal relationship, 3DVID [6] proposes a graph
network for spatial feature encoding and utilizes GRU to
aggregate spatio-temporal features. Furthermore, TCTR [20]
proposes a temporal-channel transformer module to explore
the spatial, temporal, and channel correlations among different
frames and enhance the target frame, leading to better tem-
poral modeling. Moreover, TransPillars [27] uses multi-head
attention to fuse different frame features at different scales.
Different from learning the spatial-temporal overall features,
3D-MAN [7] proposes an attention-based fusion strategy to
match and fuse each frame proposals to refine current frame
proposals. MGTANet [&] utilizes motion information to align
the other features to the current frame and uses deformable
attention [9] to fuse these aligned features. Different from the
above coupling methods, we design a “coupling-decoupling”

strategy to introduce the temporal feedback for each frame
feature, leading to better temporal fusion and detection results.

III. METHODOLOGY
A. Problem Definition

For single frame LiDAR-based 3D object detection, we
input current ¢ frame point cloud P; and predict current [
3D bounding boxes {B;}/_,. Each 3D box could be represent
as B' = (x4, v:, 2i, wi, li, hi, 0;), where (2;,v:,2;) is the 3D
box center, (w;,l;, h;) is the 3D box size, and 6; is the heading
angle. Therefore, the problem could be formulated as follows:

F(Py) = {Bj}_, (1)

Different from the single frame detection, 3D temporal
detection usually has NV consecutive frames point cloud at
t frame ranging from P,_n to P,. Therefore, in addition to
focusing on the detection part, the temporal detection methods
usually also need to focus on the fusion of multi-frame
features. Besides this, temporal 3D detection is similar to
single-frame detection, thus it could be formulated as follows:

FUP Ve n) = B, )

B. Framework Overview

The overall architecture of the proposed TFNet is shown
in Figure 3. Following previous works [3], [13], [14], we also
extract dense BEV (Bird’s-Eye View) features for N frames
of point clouds, i.e., { P, }},_, . We first voxelize each frame
of point cloud P, into regular voxels and then use sparse 3D
convolution [3] and 2D convolution to extract BEV features
V,, € REXWXC1 We further project each V,, to the size of
H x W x Cy for channel reduction. Two main modules are
proposed to fuse and enhance the multi-frame features, in-
cluding foreground feature enhancement (FFE) and coupling-
decoupling feature interaction (CDFI). In the FFE, we per-
form foreground segmentation and sampling on each frame to
gather M foreground voxel features F,, € RM*C2_ To better
capture the temporal foreground information from the sampled
features, we propose group attention to enhance information
among the multi-frame foreground features {F,,}! _, . This
module not only enhances foreground information but also
provides local information priors for subsequent fusion. Then,
to perform temporal feedback at both local and global levels,
the proposed CDFI consists of two sub-modules, the Local
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Fig. 4. (a). Different foreground sampling methods. (b). Details of the proposed Group Attention. Here we use G = 3 and M = 12 as an example. We
first sort all voxels based on their X coordinates and then split them into equal-size groups. Multi-head self-attention (MHSA) is performed in each group to
capture the local information. Subsequently, we repeat this process along the Y coordinate to capture additional features. Furthermore, we double the group
size in the next layer to enlarge the scope of feature interaction, leading to a dynamic feature fusion and better representation.

Coupling Decoupling (LCD) module and Global Coupling and
Decoupling (GCD) module. These modules are designed to
facilitate the “coupling-decoupling” temporal interaction from
local to global scopes, enabling a comprehensive exploration
of multi-frame features. Finally, the decoupled current frame
feature is used for detection.

C. Foreground Feature Enhancement

In order to effectively propagate temporal information,
it is necessary to identify foreground instance information
within each frame. However, due to the sparsity of point
clouds, it is challenging to directly facilitate local feature
interaction. To this end, we introduce the foreground feature
enhancement module to extract and enhance the local feature
representation. We first use two 2D Conv layers and sigmoid
function to predict the foreground scores at each frame. Then,
we sample M voxels in each frame to represent the foreground
information. A common approach is to take top-k voxels
based on their prediction scores. However, this approach does
not guarantee the uniformity of sampling because it only
samples voxels based on the score. As shown in Figure 4(a)(2),
although regions (A)-(E) in the red circles are predicted as
foregrounds, regions (A)-(D) have lower scores than region
(E), leading to different sampling output. Because of the
lower prediction scores or the fewer number of foreground
voxels, these four regions have few foreground voxels after
top-k sampling, as shown in Figure 4(a)(3). In contrast, region
(E) has too many foreground voxels, leading to redundant
information. Therefore, direct using top-k sampling leads to
an imbalance results, including information loss (regions (A)-
(D)) and information redundancy (region (E)).

To overcome this problem, we design a new top-FPS
strategy based on the Farthest Point Sampling (FPS) [2§]
with voxels grid coordinates. Specifically, we first use top-
k to sample M’ foreground voxels based on their prediction
scores, where M’ > M, then utilize FPS on the M’ voxels

to further sample M voxels. As shown in Figure 4(a)(4), our
sampling strategy preserves more information in the low-score
regions while removing redundant information in the high-
score regions, leading to a more balanced sampling results.

Group Attention. Given M sampled foreground voxel
features in each frame, we further try to enhance the multi-
frame foreground features {F,}! _, , representation. How-
ever, there are differences in the quantity and representation
of features in different regions. For example, compared to
features from cars, features from pedestrians have different
semantics and may be fewer in number. Therefore, the global
modeling from vanilla attention [20] may lead to wrong
information interaction between different objects. Meanwhile,
we notice that the voxels belonging to the same object tend
to cluster together in a local region. Although there are
differences in quantity, this clustering characteristic is clearly
formed according to coordinates. Inspired by this observation,
we propose Group Attention which divides all foreground
features into different groups based on their coordinates and
performs local information interaction. As shown in Fig-
ure. 4(b), we set the voxel number as G in each group,
and then sort each frame foreground feature F), based on
their voxels coordinates (X-axis or Y-axis). Therefore, in each
frame, we divide the F,, € RM*® into grouped features
F, € RLEIXGXCz Meanwhile, due to the short interval time
between frames, adjacent groups between different frames
have a temporal correlation. Therefore, we concatenate these
multi-frame grouped features into Fy, € RLEGIXNGxCa gpq
apply self-attention within each group to extract temporal local
information as follows:

F; = F + MHSA(LN(F})) 3)
F,' = F, 4+ FFN(LN(F})) 4)
where MHSA(+), LN(-) and FFN(-) represent multi-head self-

attention, layer normalization and feed-forward layer respec-
tively. Since Fg’ includes features from different frames, we
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Fig. 5. Details of the proposed LCD. In the coupling process, to couple the temporal information, we perform cross-attention between a learnable foreground
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Femp to couple the temporal foreground information. Then, to maintain the local consistency and expand the decoupling scopes, we decouple the temporal
information to local regions centered at foreground voxels. Here we only show decoupling a single frame for clarity.

do not add position embedding in the attention.

However, as we mentioned above, objects in different cat-
egories usually occupy different sizes of space, and objects
oriented in different directions also have different spaces in
different directions. Consequently, fixed local settings cannot
adapt to all objects in the scene, limiting the enhancement
of features. To resolve this issue, we further introduce two
dynamic operations to flexibly capture surrounding neighbor-
hood information. Specifically, in response to the different
directions between objects, we group voxels using the X-
coordinate at the ¢-th layer while using the Y'-coordinate at
the 7 4+ 1-th layer. This dynamic grouping direction can learn
information from different directions without being limited to
a specific direction. In order to cope with objects of different
sizes, we use different numbers of groups in each layer to
dynamically change the range of groups. If there are G voxels
in a group at i-th layer, then there will be 2G voxels in a
group at ¢ + 1 layer. This dynamic grouping size can learn
information from different range neighborhoods without being
limited to a specific size. Based on the semantic feature
correlation, these two dynamic settings enable each voxel
to adaptively select appropriate directions and sizes of other
voxels for feature enhancement. Overall, different from the
global dependence of vanilla attention, our proposed Group
Attention performs attention in a dynamic local group, thereby
enhancing the ability to capture the neighboring information
of each foreground voxel more effectively.

D. Coupling-Decoupling Feature Interaction

In this module, we aim to interact the multi-frame fea-
tures following the “coupling-decoupling” strategy. To explore
multi-frame features more comprehensively and integrate them
more deeply, we propose LCD and GCD for conducting
feature coupling-decoupling at the local and global levels,
respectively.

1) Local Coupling Decoupling: After the FFE mentioned
above, we already have multi-frame foreground features that
provide us with sufficient local information. In this section,
based on these enhanced foreground features, we aim to
perform a coupling-decoupling temporal fusion, thereby pro-
viding feedback correction for the foreground features. The

detailed architecture is shown in Figure 5. Meanwhile, since
the attention mechanism is only dependent on input and has
strong feature interaction capabilities, we use attention to
implement our coupling-decoupling approach.

We first use a learnable foreground embedding F.,,; to
couple with the enhanced multi-frame foreground features
{F)/}t _,_ . The foreground embedding has the same shape
as each frame foreground feature, i.e. M x C3. We also con-
catenate the multi-frame foreground features {F/}!_, 5 to
obtain the temporal foreground features F”/ € RVM*C2 We
perform cross-attention between F,,,; and F” by transforming
Fmp to query and transforming F” to key and value, coupling
the temporal foreground information into F’emb.

Fomp = CrossAttn(Fepmp, F', F") )

After aggregating the temporal foreground information in
the embedding, we would like to decouple the temporal
information into each frame for feature feedback. However,
the group attention has performed information interaction for
the foreground features. Meanwhile, only decoupling these
individual features back to each frame feature may lead to
information inconsistency in the local area. Considering the
above two points, we incorporate the neighboring regions of
each foreground feature during the decoupling process. Since
the regional feature and central foreground feature are usually
similar due to the local consistency, and aggregated temporal
features are also learned based on central features, we decouple
the foreground information into local regions by using central
foreground features as a bridge. The local decoupling not
only expands the fusion score but also maintains the feature
consistency. We will show the effectiveness of the region-level
decoupling in the experimental comparison.

As shown in Figure 5, inspired by the attention mecha-
nism [20], we propose a similarity-based feature decoupling
method. We first define a local region R centered on each
foreground of interest and of size [ x [ in each frame, thus the
size of local region features in each frame is M x I xIx Cy. We
then reshape it to M x L x C for the following feature decou-
pling, where L = [2. Next, for each local region, we compute
the similarity between the centered foreground feature and
the foreground embedding, which is also normalized in (0,
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frame features, forming explicit temporal feedback. Afterwards, the enhanced feature is fused with the temporal features from the coupling process for implicit

temporal feedback. Here we only show decoupling a single frame for clarity.

1) by softmax. Furthermore, we multiply the similarity with
the local region features to decouple the temporal contextual
information to the neighboring region. The process could be
formulated as follows:

Femeyly,/
Vd
W' =AW,

A = Softmax (6)

)

where W,, is the local region feature of each frame and d
is the number of channels. Finally, the local region feature
is reshaped back to M x [ x I x C' and is scattered back to
the BEV feature. By decoupling within the local region, the
aggregated temporal foreground information in F,,; could be
feedback to eliminate the noise and augment the features of
potential object regions.

2) Global Coupling Decoupling: After conducting multi-
frame features interaction in the local scope, we further
explore fusing scene information of multi-frame features in
the global scope. As shown in Figure 6, similar to the local
feature interaction, we also design a learnable embedding
Vemp € REXWXC2 named temporal scene embedding, to
couple and decouple scene information.

Similar to the LCD, we also couple the multi-frame scene
information through the attention mechanism. However, dif-
ferent from the LCD which only attends to the foreground
features, GCD needs to process the overall BEV scene fea-
tures. Therefore, directly applying vanilla attention [20] to the
multi-frame BEV features would introduce a huge computa-
tional load. To avoid this problem, we utilize the deformable
attention [9] to couple the temporal scene embedding with
the multi-frame BEV features by limiting the receptive field
of Value feature V. Compared to vanilla attention, for each
query point, deformable attention generates a fixed number
of similarity scores by applying a linear layer on the Q.
Meanwhile, by predicting the same number of sampling offsets
with another linear layer, the deformable attention sample
value feature from the original value feature. Finally, by
multiplying the predicted weight A with the sampled feature

V', deformable attention outputs the fusion feature. By learning
the weights of the attention linear layer and offset linear layer,
the final fusion output not only reflects the relationship be-
tween the two features but also avoids too much computation
cost. The process could be formulated as:

A = Softmax (Linear (Veyms)), Au = Linear(Vemp)  (8)
V, =S(Va,u + Au) ©)

R H NJ
Vemb = > _ Wi (Z Ay - Wy, ,ik> (10)

h=1 n=1

where S(-) represents bilinear sampling, W), € R¢»*¢2 and
Wy € R€2%Cn_ (Y is the channels of each head, H is the
number of heads. Although the attention weight A here is not
directly calculated by multiplying ) and K, it is predicted
by using a learnable linear layer on V,,,;. Meanwhile, V,, is
also sampled based on the offset predicted from V,,;, and
the final output is to multiply the sampled V,, with the weight
A. Therefore, by learning the weights of the attention linear
layer and offset linear layer, the final output also reflect the
relationship between the two features.

After coupling the temporal scene information into the tem-
poral scene embedding, we would like to allocate the temporal
scene-level information in V,,,, back to each frame BEV
feature, completing the global feature decoupling. Although
we could directly fuse the learnable scene embedding with
each frame BEV feature for feature decoupling, this approach
cannot fully explore the temporal information because each
single frame BEV feature only contains spatial information
but not temporal information. For this purpose, we first need
to embed the temporal information in individual frame features
to enhance their temporal awareness. Similar to the FFE, we
first use cross-attention to enhance each frame feature by ex-
plicitly interacting with all frames. By directly interacting with
multi-frame features, we can effectively integrate the spatial-
temporal information from multiple frames into individual
single-frame features and make single-frame feature temporal-
aware, preparing for the fusion with temporal embedding.
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TABLE I
PERFORMANCE COMPARISON WITH OTHER METHODS ON THE NUSCENES fest SET.

Method || NDS mAP | Car Truck Bus Trailr C.V Ped. Motor. Bicycle T.C  Barrier
PointPillars [1] 453 30.5 68.4 23.0 28.2 23.4 4.1 59.7 27.4 1.1 30.8 38.9
WYSIWYG [30] 41.9 35.0 79.1 30.4 46.6 40.1 7.1 65.0 18.2 0.1 28.8 34.7
3DSSD [31] 56.4 42.6 81.2 47.2 61.4 30.5 12.6 72 36.0 8.6 31.1 47.9
SA-Det3D [32] 59.2 47.0 81.2 43.8 57.2 47.8 11.3 733 32.1 7.9 60.6 55.3
SSN V2 [33] 61.6 50.6 82.4 41.8 46.1 48.0 17.5 75.6 48.9 24.6 60.1 61.2
CBGS [34] 63.3 52.8 81.1 48.5 54.9 42.9 10.5 80.1 51.5 223 70.9 65.7
CVCNet [35] 64.2 55.8 82.7 46.1 45.8 46.7 20.7  81.0 61.3 34.3 69.7 69.9
HotSpotNet [36] 66.6 59.3 83.1 50.9 56.4 53.3 23.0 81.3 63.5 36.6 73.0 71.6
CyliNet [37] 66.1 58.5 85.0 50.2 56.9 52.6 19.1 84.3 58.6 29.8 79.1 69.0
CenterPoint [14] 67.3 60.3 85.2 53.5 63.6 56.0 20.0 84.6 59.5 30.7 78.4 71.1
AFDetV2 [38] 68.5 62.4 86.3 54.2 62.5 58.9 26.7 85.8 63.8 34.3 80.1 71.0
S2M2-SSD [39] 69.3 62.9 86.3 56.0 65.4 59.8 262 845 61.6 36.4 77.7 75.1
TransFusion-L [29] 70.2 65.5 86.2 56.7 66.3 58.8 28.2  86.1 68.3 44.2 82.0 78.2
VISTA [40] 70.4 63.7 84.7 54.2 64.0 55.0 29.1 83.6 71.0 45.2 78.6 71.8
Focals Conv [18] 70.0 63.8 86.7 56.3 67.7 59.5 238 875 64.5 36.3 81.4 74.1
VoxelNeXt [41] 70.0 64.5 84.6 53.0 64.7 55.8 28.7 85.8 73.2 45.7 79.0 74.6
LargeKernel3D [19] 70.6 65.3 85.5 53.8 64.4 59.5 29.7 859 72.7 46.8 79.9 75.5
Link [42] 71.0 66.3 86.1 55.7 65.7 62.1 309 85.8 73.5 47.5 80.4 75.5
FocalFormer3D [43] 72.6 68.7 87.2 57.1 69.6 64.9 344 882 76.2 49.6 82.3 77.8
FSTR [44] 71.5 67.2 86.5 54.1 66.4 58.4 334 88.6 73.7 48.1 84.4 78.1
HEDNet [45] 72.0 67.7 87.1 56.5 70.4 63.5 336 879 70.4 44.8 85.1 78.1
DSVT [46] 72.7 68.4 86.8 58.4 67.3 63.1 37.1 88.0 73.0 47.2 84.9 78.4
SAFDNet [47] 72.3 68.3 87.3 573 68.0 63.7 373 89.0 71.1 44.8 84.9 79.5
Voxel Mamba [48] || 73.0 69.0 | 868 57.1 680 632 354 89.5 747 508 869 773
3DVID [6] 71.4 65.4 87.5 56.9 63.5 60.2 32.1 82.1 74.6 45.9 78.8 69.3
TCTR [26] - 50.5 83.2 51.5 63.7 33.0 156 749 54.0 22.6 52.5 53.8
TransPillar [27] - 52.3 84.0 52.4 62.0 34.3 189 779 55.2 27.6 554 55.1
MGTANEet [8] 71.2 65.4 87.7 56.9 64.6 59.0 28.5 864 72.7 47.9 83.8 65.9
SUIT [49] 68.9 62.8 85.9 53.7 59.0 54.9 264 85.6 68.9 42.9 79.7 71.6
TFNet-Dense 72.8 68.8 87.6 57.4 66.4 64.2 34.1 87.0 77.8 55.0 82.2 76.2
TFNet-Sparse 733 698 | 892 580 650 640 386 897 802 520 862 753

Subsequently, we employ the deformable attention [9] to
perform cross-attention between the enriched temporal-aware
single-frame feature V; and the temporal scene embedding
Vemp. Given that each frame feature has gained temporal
awareness by interacting with all frame features, linking it
with the temporal scene embedding enables comprehensive
exploration of aggregated temporal information, resulting in
better feature decoupling. The decoupling process for k—th
frame could be formulated as follows:

Vi = CrossAttn(Vi, {Vi}io,—n, {Vitizi—n);
ke{t—N,..t}
V" = CrossAttn(Vy, Vemb, Vems ), k € {t — N, ...,t} (12)

(11

Finally, we use the decoupled current frame feature V;” to
detect objects by the detection head.

E. Loss

Our detection losses are the same as the single-frame
detector [14], [29]. Additionally, we use CrossEntropy loss
in the FFE as follows:

1
Lieg = Z —[gilog(yi) + (1 — i) log(1 — )] (13)

Where ; is the label and y; is prediction. The total loss is:
L = Lget + Lseg (14)

Where Lg4.; represents the detection head loss of the detection
method we build on.

IV. EXPERIMENTS

In this section, we compare our proposed method with the
state-of-the-art methods on nuScenes datasets. Then, we con-
duct extensive ablation studies to demonstrate the effectiveness
of our proposed modules of TFNet.

A. Experimental Setup

Dataset. Most of the 3D temporal detection methods [&],
[27], [49], [51] uses the nuScenes dataset for comparison.
Following these previous works, we also adopt this dataset in
our comparison. nuScenes [52] is a large autonomous driving
dataset for 3D object detection in urban scenes. The dataset
contains 1000 driving sequences, and is officially split into
700, 150, and 150 scenes for training, validation, and testing
respectively. The LiDAR data is collected at 20 Hz while the
annotations are provided at 2 Hz. Moreover, we also conduct
a comparison on the Waymo dataset. Compared to nuScene
dataset, Waymo consists of more scenes and a larger LIDAR
range. This dataset consists of 798 scenes for training and
202 scenes for validation. Each scene includes 200 frames
at a frame of 10 HZ, with labeled 3D bounding boxes for
vehicles, pedestrians, cyclists and signs.

Metric. For nuScene dataset, we use mean average precision
(mAP) and nuScenes detection score (NDS) [52] as the
evaluation metric. The mAP is defined by the BEV center
distance instead of the 3D IoU, which is computed over the
distance thresholds of 0.5 m, 1 m, 2 m, 4 m across 10
categories. NDS is a weighted sum of mAP and other true
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TABLE 11
PERFORMANCE COMPARISON WITH OTHER METHODS ON THE NUSCENES valid SET.

Method H NDS mAP [ Car  Truck Bus Trailer C.V  Ped. Motor. Bicycle T.C  Barrier
SECOND [3] 62.3 50.6 81.8 51.7 66.9 37.3 15.0 77.7 42.5 17.5 57.4 59.2
CBGS [34] 56.3 56.3 82.9 52.9 64.7 37.5 18.3  80.3 60.1 394 64.8 64.3
CVCNet [35] 65.5 54.6 83.2 50.0 62.0 34.5 20.2 81.2 54.4 339 61.1 65.5
HotSpotNet [36] 66.0 59.5 84.0 56.2 67.4 38.0 20.7  82.6 66.2 49.7 65.8 64.3
CenterPoint [14] 66.8 59.6 85.5 58.6 71.5 37.3 17.1 85.1 58.9 434 69.7 68.5
VoxelNeXt [41] 67.1 60.0 85.6 58.4 71.6 38.6 179 854 59.7 434 70.8 68.1
Focals Conv [18] 68.1 61.2 86.6 60.2 72.3 40.8 20.1 86.2 61.3 45.6 70.2 69.3
LargeKernel3D [19] 69.1 63.9 85.1 60.1 72.6 41.4 243  85.6 70.8 59.2 72.3 67.7
TransFusion-L* [29] 70.0 65.6 87.5 61.8 73.7 43.1 25.1 88.0 74.6 58.1 75.1 69.7
HEDNet [45] 714 66.7 87.7 60.6 77.8 50.7 289 87.1 74.3 56.8 76.3 66.9
DSVT [46] 711 664 | 874 626 759 421 253 882 748 587 718 709
Voxel Mamba [48] 71.9 67.5 87.9 62.8 76.8 459 249 893 77.1 58.6 80.1 71.5
ScatterFormer [50] 70.5 66.9 87.1 60.4 77.8 48.7 289 87.7 76.2 59.8 76.1 66.5
SAFDNet [47] 71.0 66.3 87.6 60.8 78.0 435 26.6 87.8 75.5 58.0 75.0 69.7
MGTANEet [8] 70.6 64.8 87.9 61.3 73.2 40.2 230 86.6 74.1 59.9 75.7 66.1
TFNet-Dense 70.9 65.7 88.0 62.2 71.8 43.7 234 875 75.2 64.0 73.7 67.6
TFNet-Sparse 71.9 67.6 89.5 62.5 754 46.1 266 89.3 78.0 58.8 77.2 72.7

positive metrics, including translation, orientation, and other TABLE III

attributes. For the Waymo dataset, the official metrics are mean
Average Precision (mAP) and mean Average Precision with
Heading (mAPH). The two metrics are computed with 3D
IoU threshold of 0.7 for vehicles.

B. Implementation Details

Data Process. Following previous works [6], [8], we also
use 10 sweeps to aggregate the keyframe and use 3 keyframes
as the network input. Meanwhile, for each LiDAR point cloud,
we use the (z,y, z,r,t) as input, where (x, y, z) represent the
3D coordinate, r and t represents the reflectance and keyframe
time respectively.

Network Architecture. Our TFNet has two versions: (a)
TFNet-Dense: is built upon the dense detector Center-
Point [14]. (b) TFNet-Sparse: is built upon the sparse detector
TransFusion-L [29]. We use an input point cloud range of [-
54.0m, 54.0m] for the X-Y axes and [-5m, 3m] for the Z-axis.
The voxel size is set to [0.075m, 0.075m, 0.2m] thus leading
to 1440 x 1440 x 40 voxel grid. In feature extraction, we also
use sparse convolution [3] to extract sparse 3D voxel features
and then convert them to 2D BEV features. The downsample
rate is 8 and the final basic feature V,, is 180 x 180 x 512.
Before the proposed modules, we first use a convolution layer
to reduce the channel number from 512 to 256. In the FFE,
we sample 256 foreground voxels in each frame. The basic
number for each group in the Group Attention is set as 8. All
attention modules consist of 6 layers. In the LCD, we set the
local region size as 5 X 5.

Training. Following [14], [29], we use Adam optimizer with
one-cycle learning rate policy, the max learning rate is set as
1 x 1073, the weight decay is 0.01 and momentum ranges
from 0.85 to 0.95. Our model is trained for 20 epochs with
batch size of 16 using 8 NVIDIA V100 GPUs. We also apply
data augmentations in the training stage, including global
rotation, global scaling, random flipping and GT sampling.
The rotation angle is [-7, 7] along the z-axis. The scale factor
is within [0.95, 1.05]. All the above augmentations are added

PERFORMANCE ON THE WAYMON validation SET FOR CLASS VEHICLE.

Methods Frames L2 AP L2 APH
PointPillars [1] 1 55.18 54.69
SECOND [3] 1 63.90 63.30

CenterPoint [14] 1 - 66.20
CenterPoint [14] 2 - 67.30
3D-MAN [7] 16 67.61 67.14
TENet-Dense 5 71.11 70.66

to multi-frame point clouds in the same way. We also follow
CBGS [34] to perform class-balanced sampling.

C. Comparison to the state-of-the-art

As shown in Table I, our proposed TFNet achieves new
state-of-the-art detection performance. Compared to the two
single-frame baseline methods, TransFusion [29] and Center-
Point [14], our methods improve the performance by 3.1 points
and 5.5 points on NDS respectively. Meanwhile, compared to
our baseline methods, some recent single-frame methods [44]-
[47] also have more advanced point cloud feature extraction
networks, resulting in better performance. However, through
the proposed “coupling-decoupling” algorithm, we effectively
fused multiple frames of information and outperforms these
recent methods. Moreover, compared to the previous top-
ranked temporal method MGTANet [8], our two versions
still carry out superior results with 2.1 points and 1.6 points
improvement on NDS respectively. It is worth noting that
our method uses the exact same data settings as MGTANet
[8], and our TFNet-Dense, which uses the same baseline
network as MGTANet, also performs better than MGTANet.
The result verifies the effectiveness of our proposed “coupling-
decoupling” temporal fusion strategy.

We also report our performance in the nuScenes valid set,
as shown in Table II. The results are consistent with our
results on the test set, showing that our proposed method could
achieve better performance. It is obvious that our method im-
proves the overall accuracy compared to previous single-frame
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Fig. 7. Visualization of the prediction results. The boxes represent the ground-truth boxes, the boxes, boxes and the boxes represent the predictions of ours,
TransFusion-L [29] and CenterPoint [14], respectively.

methods. Compared to the baseline method TransFusion [29] TABLE IV

and CenterPoint [14], our method improves the performance ABLATION STUDY OF EACH COMPONENT ON NUSCENES valid SET.

of NDS/mAP by 1.9/2.0 points and 4.1/6.1 points respec- . oo -

. - TOPOSE odules eriormance

tively. Moreover, compared to previous temporal methods, our Methods  —rr : ICD — GCD NDS AP

proposed method also achieves higher detection results. The Baseline ~ 66.34 60.44

two results verify the effectiveness of our proposed temporal v % 23'21(1)? géiggg?

feedback mechanism in temporal fusion. We also visualize Ours v/ 67841150 62841240

some prediction results in Figure 7. v 4 68.681234  64.1513.71
v v v 69.5013.16 64.7014.26

In Waymo dataset, to have a fair comparison, we use the
TFNet-Dense in the experiment. As Table III shows, our
method shows better performance. Compared to the baseline
model CenterPoint, our method improves the L2 APH by
3.36. Compared to 3D-MAN, we improve the L2 AP/APH by We conduct ablation studies on the nuScenes valid set
3.50/3.52, verifying the effectiveness of the proposed method. to explore the effect of each proposed module. Following

previous works [8], we also only use 1/8 of the training set

D. Ablation Study
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Fig. 8. (a) The comparisons of different frames. (b) The comparisons of different sampling numbers in FFE. (c) The comparisons of different region sizes

in local decoupling.

in training and all valid set in the evaluation to reduce the
required time of experiments. All ablation studies are built on
Transfusion-L [29].

Effect of proposed three modules. We first conduct ablation
studies on our proposed modules, as shown in Table IV. Com-
pared to the baseline model which simply concatenates multi-
frame features, the proposed FFE improves the performance
by 0.84 points and 1.09 points in NDS and mAP. We further
add LCD to this model, leading to improvements of 0.49 and
0.92 points in NDS and mAP. Based on the baseline model, we
also only perform GCD and improve the results by 1.50 and
2.40 points. Compared to the above two modules, the overall
BEV feature has a larger perceiving range and more interacted
features, resulting in higher performance. Additionally, with
the FFE, the GCD could better enhance each frame feature,
further improving the NDS and mAP with 0.84 and 1.31
points. Finally, by equipping all proposed modules, we achieve
the best results. Compared to the baseline model, we improved
the NDS and mAP by 3.16 and 4.26 points. We also compare
different fused frames, shown in Figure 8 (a). With the number
of frames increasing, the performance also gets improved.

Comparison in FFE. As shown in Table V, we explore
different components in the proposed FFE, including the
sampling strategies and attention types. We first compare top-
k sampling, setting threshold sampling, FPS and our top-FPS
in the foreground sampling. For threshold sampling, we set
the threshold as 0.5 and use repeatedly random sampling.
Compared to top-k sampling, FPS provides more balanced
sampling outcomes, leading to improved performance. Fur-
thermore, by employing a top-k approach as an initial filter,
our top-FPS can obtain more accurate and balanced results,
achieving the best performance, verifying our hypothesis in
Section III-C. We also compare different sampling numbers.
As shown in Figure 8 (b), sampling 256 foreground voxels
achieves the best performance. The results are consistent with
the average number of foreground voxels in each point cloud
scene in the nuScenes dataset. When sampling more voxels,
too much background and noise will be introduced, resulting
in performance degradation. Finally, we compare different
attention methods with our proposed group attention in the
foreground enhancement, including vanilla attention [20], tra-
jectory attention [53] and KNN Attention [54]. The trajectory
attention [53] is proposed in the video transformer to model

TABLE V
ABLATION STUDY ON THE PROPOSED FFE.

FFE Modules Methods Performance
NDS  mAP
Top-k 68.17  63.25
) . Threshold 68.95 64.33
Sampling Strategies
FPS 69.09 64.53
Top-FPS 69.50 64.70
Attention 68.98  63.80
) Traj-Attention 68.51  63.39
Attention Types .
KNN Attention | 69.43  64.62
Group Attention | 69.50  64.70

TABLE VI
ABLATION STUDY ON PROPOSED GROUP ATTENTION.

i Performance
Group Attention Modules | Methods NDS D
X-Y Alternation X 69.02 63.86
v 69.50  64.70
Double Number X 69.28 64.73
v 69.50  64.70
4 69.24  64.66
Basic Number 8 69.50 64.70
16 69.08 64.57

the temporal correspondences. We follow the default setting in
Point Transformer [54] as set K = 16 in the KNN Attention.
As we discussed in Section III-C, the global dependency
in vanilla attention introduces noise between different ob-
jects. Meanwhile, we also notice that the trajectory attention
achieves lower performance than the other methods. We be-
lieve that the sparsity of points limits the temporal modeling
of trajectory attention, which results in lower results. KNN
Attention [54] also implements local attention by projecting
neighboring points as key and value features, similar to ours.
Nevertheless, our Group Attention has the dynamic setting to
enlarge the receptive field, resulting in a better performance.
Comparison in Group Attention. We also conduct ablation
studies on the proposed Group Attention. As shown in Ta-
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TABLE VII
COUPLING AND DECOUPLING ON PROPOSED LCD.

Performance
LCD NDS mAP
w/o LCD 68.68 64.15
+Coupling 68.37/0.31  63.14]1.01
+Coupling +Decoupling | 69.5070.82  64.7070.55

ble VI, removing the X-Y alternation sorting leads to a 0.48
and 0.84 points performance degradation in NDS and mAP.
Meanwhile, removing the double-group setting between layers
results in NDS decrease by 0.22 points but mAP increase by
0.03 points. The results prove that the two dynamic operations
can provide sufficient neighborhood information to enhance
local representation, which further boosts the performance of
3D object detection. Moreover, we compare different basic
numbers of points within a group and find that setting G = 8
could achieve the best performance. We believe that too few
points in a group result in insufficient information aggrega-
tions, while too many points may introduce noise.

Effects of Coupling and Decoupling. Here we explore the
proposed “coupling-decoupling” temporal interaction strategy
in both LCD and GCD. As shown in Table VII, in the
local scope, only using feature coupling leads to a perfor-
mance drop of 0.31 and 1.01 points in NDS and mAP.
As mentioned in Group Attention, different regions typically
correspond to different objects. Therefore, directly coupling
these multi-frame foreground features into the F,,; leads to
incorrect information interaction. Meanwhile, scattering back
the temporal foreground feature to the frame feature also
leads to information inconsistency in a local area. Based on
the coupling, we add local decoupling and achieve the best
performance. Compared to only performing feature coupling,
a complete coupling-decoupling brings in an improvement of
1.13 and 1.56 points in NDS and mAP respectively. The result
highlights the importance of decoupling at the local scope,
which can effectively feedback temporal information and elim-
inate the noise caused by coupling. Meanwhile, compared to
the baseline, the “coupling-decoupling” strategy brings in 0.82
and 0.55 improvements in NDS and mAP. We further conduct
a similar ablation study in the global scope, as shown in
Table VIII. Only coupling the multi-frame scene features could
improve the performance by 0.90 and 1.42 points in NDS and
mAP. Based on feature coupling, feature decoupling further
improves the performance by 0.93 and 0.83 points in NDS and
mAP, and brings in 1.83 and 2.25 points in NDS and mAP
compared to the baseline. For temporal point cloud detection,
most existing methods involve transferring past frames to the
current frame and then fusing them through convolution or
attention. This can be seen as the “coupling-only” strategy.
However, as shown in Table VII and Table VIII, the “coupling-
only” strategy achieves limited improvement. We believe that
the “coupling-only” strategy overlooks temporal noise intro-
duced during multi-frame fusion, where past frames may not
always share consistent information with the current frame. In
contrast, our proposed “coupling-decoupling” strategy intro-

TABLE VIII
COUPLING AND DECOUPLING ON PROPOSED GCD.

Performance
GCD NDS mAP
w/o GCD 67.67 62.45
+Coupling 68.5710.90  63.8771.42
+Coupling +Decoupling | 69.5011.83  64.7072.25

TABLE IX
DECOUPLING ON PROPOSED LCD.

Performance
Methods NDS AP
w/o Decoupling 68.37 63.14
Vanilla Attention 68.12/0.25  63.2470.10
Depth-wise Correlation | 68.7770.40  64.1210.98
Proposed Method 69.5011.13  64.7071.56

duces a temporal feedback mechanism through the decoupling
process, which refines the aggregated features by feeding them
back into the current frame, effectively mitigating temporal
noise. Therefore, in both local and global feature scopes,
the proposed ‘“coupling-decoupling” strategy could further
improve the detection performance.

Comparisons in Decoupling. We first analyze the decoupling
methods in both LCD and GCD. As shown in Table IX,
we compare vanilla attention, depth-wise correlation and our
proposed similarity-based method in the decoupling of LCD.
Specifically, in attention implementation, the query comes
from the region features while the key and value come
from the learnable foreground embedding F,,;. In correlation
implementation, the learnable foreground embedding works
as the correlation kernel. Compared to the two methods,
our approach demonstrates superior performance, showing
improvements of 1.38/1.46 points and 0.73/0.58 points in
NDS/mAP, respectively. These results validate the importance
of the centered foreground features, which serve as a bridge
in fusing the region features and embedding features Fi,,;
in our method. Moreover, we also compare different region
sizes shown in Figure 8 (c). When the region size is small,
the performance improves as the size increases until it reaches
its peak at 5. Subsequently, the performance starts to decline
with further increases in size. We believe that too small
size limits the foreground feature decoupling, and too large
size may introduce too many irrelevant regions and noise.
Additionally, we compare different components in the decou-
pling of GCD. We divide the decoupling part into two parts:
feature enhancement and temporal fusion, which perform
the cross-attention fusion by using multi-frame features and
temporal embedding respectively. As shown in Table X, the
enhancement and temporal fusion bring in 0.15/0.70 points
and 0.62/0.77 points improvements respectively. Finally, using
both of them achieves the best performance. The results verify
the effectiveness of the two parts in the decoupling of GCD.
Effect of Voxel Size. Finally, we explore the effectiveness
of voxel size in our method, shown in Table XI. With the
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TABLE X
DECOUPLING ON PROPOSED GCD.

Performance
Methods NDS AP
w/o Decoupling 68.57 63.87
+ Enhance 68.7210.15  64.5710.70
+ Temporal 69.1910.62  64.6410.77
+ Enhance + Temporal | 69.5010.93  64.7070.83

TABLE XI
ABLATION STUDY ON VOXEL SIZE.

. Performance

Voxel Size NDS AP

\'A! (0.15, 0.15, 0.2) 64.71 57.78
V2 | (0.125,0.125, 0.2) | 66.32  60.23
V3 | (0.075, 0.075, 0.2) | 69.50 64.70

voxel size getting smaller, the performance gets better. We
believe that a larger voxel size would lose detailed geometry
information. The results are also consistent with previous
detection methods [3], [29].

V. CONCLUSION

In this paper, we propose TFNet, a temporal feedback
network for 3D temporal detection. Different from previous
works, TFNet could feedback the temporal feature to eliminate
the noise by the proposed ‘“coupling-decoupling” strategy.
The Foreground Feature Enhancement (FFE) module and the
Coupling-Decoupling Feature Interaction (CDFI) module are
proposed, which are designed to enhance the multi-frame
foreground information and fuse the multi-frame features from
local to global respectively. The experimental results on the
nuScenes dataset show that our method achieves a new state-
of-the-art performance, and the ablation study also verifies the
effectiveness of the proposed temporal feedback mechanism.
In the future, we would like to integrate the image information
into temporal 3D detection.
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