
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED DECEMBER, 2024 1

StreamMOS: Streaming Moving Object
Segmentation with Multi-View Perception and

Dual-Span Memory
Zhiheng Li , Yubo Cui , Jiexi Zhong , and Zheng Fang*

Abstract—Moving object segmentation based on LiDAR is a
crucial and challenging task for autonomous driving and mobile
robotics. Most approaches explore spatio-temporal information
from LiDAR sequences to predict moving objects in the current
frame. However, they often focus on transferring temporal cues
in a single inference and regard every prediction as independent
of others. This may lead to inconsistent segmentation results for
the same object across different frames. To solve this issue, we
propose a streaming network with a memory mechanism, called
StreamMOS, to build the association of features and predictions
among multiple inferences. Specifically, we utilize a short-term
memory to convey historical features, which can be regarded as
spatial priors of moving objects and are used to enhance current
inference by temporal fusion. Meanwhile, we build a long-term
memory to store previous predictions and exploit them to refine
current forecasts at the voxel and instance levels through voting.
Besides, we apply multi-view encoder with cascaded projection
and asymmetric convolution to extract motion feature of objects
in different representations. Extensive experiments validate that
our algorithm gets competitive performance on SemanticKITTI
and Sipailou Campus datasets.

Index Terms—Semantic Scene Understanding; Deep Learning
Methods; Computer Vision for Transportation

I. INTRODUCTION

ON urban roads, there are often many dynamic objects
with variable trajectories, such as vehicles and pedestri-

ans, which create the collision risk for autonomous vehicles.
Meanwhile, these moving objects will cause errors in simulta-
neous localization and mapping (SLAM) [1], as well as pose
challenges for obstacle avoidance [2] and path planning [3].
As a result, online moving object segmentation (MOS) based
on LiDAR points has become a crucial task in multiple fields.
However, owing to the unordered and sparse nature of LiDAR
points, MOS still faces some challenges, especially difficulty
in perceiving moving objects with sparse points at a distance.

Manuscript received: July, 25, 2024; Revised November, 13, 2024; Ac-
cepted December, 5, 2024.

This paper was recommended for publication by Editor Cesar Cadena
Lerma upon evaluation of the Associate Editor and Reviewers’ comments.
This work was supported in part by the National Natural Science Foundation
of China under Grants 62073066, in part by the Fundamental Research Funds
for the Central Universities under Grant N2226001, and in part by 111 Project
under Grant B16009. (Corresponding author: Zheng Fang)

The authors are all with Faculty of Robot Science and Engineering, North-
eastern University, Shenyang 110819, China. Zhiheng Li and Zheng Fang
are also with the National Frontiers Science Center for Industrial Intelligence
and Systems Optimization, Northeastern University, Shenyang 110819, China
and also with Key Laboratory of Data Analytics and Optimization for Smart
Industry, Ministry of Education, Northeastern University, Shenyang 110819,
China. (e-mail: fangzheng@mail.neu.edu.cn)

The code will be open at https://github.com/NEU-REAL/StreamMOS.git.
Digital Object Identifier (DOI): see top of this page.

(b) The streaming structure of our StreamMOS

(c) The comparison between MotionSeg3D and StreamMOS

MotionSeg3D StreamMOS

t-1 t t+1 t-1 t t+1

false predictionincomplete

(a) The pipeline of previous methods

Fig. 1. Pipeline comparison of moving object segmentation approaches.
We compare the structure of proposed StreamMOS with previous methods
in (a) and (b). Meanwhile, the segmentation results obtained by our method
achieve better spatial integrity and temporal continuity in (c).

To tackle the above problem, the mainstream strategy is to
exploit spatio-temporal information from LiDAR sequences.
For instance, Chen et al. [4] generate residual image in range
view (RV), which reflects spatial positions of moving objects
in each frame and can be utilized to perform temporal fusion
to infer motion states of objects. Based on the RV projection
in [4], Sun et al. [5] adopt motion-guided attention to better
explore temporal motion cues from residual images. Besides,
some works [6], [7] attempt to map point clouds to bird’s eye
view (BEV) and ensure consistent object size and movement.
Recently, Wang et al. [8] process LiDAR sequences directly
via 4D convolution to construct temporal associations while
adding instance detection to promote segmentation integrity.

However, as displayed in Fig. 1(a), these methods focus on
temporal fusion in a single inference and make independent
predictions for each frame, leading to inconsistent results for
the same object at different moments (in Fig. 1(c)). Despite
Mersch et al. [9] leveraging a binary Bayes filter to combine
multiple predictions, it still ignores information transmission
at feature level, which supplies rich spatial context to the next
inference. Thus, we present a “streaming” structure as shown
in Fig. 1(b), which regards historical feature as a strong prior
and exploits it to guide the current inference. Meanwhile, the
past predictions are stored in long-term memory and utilized

ar
X

iv
:2

40
7.

17
90

5v
2

 [
cs

.C
V

]
 1

1
D

ec
 2

02
4

https://orcid.org/0000-0002-1477-2066
https://orcid.org/0000-0001-5302-0484
https://orcid.org/0009-0000-3388-7865
https://orcid.org/0000-0003-3887-3141

2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED DECEMBER, 2024

to suppress false predictions. In this way, we construct robust
correlations in multiple inferences and fully explore temporal
information to ensure consistent results in different frames.

To implement the idea of streaming, we propose a moving
object segmenter, named StreamMOS, which captures object
motion across multiple views and adopts dual-span memory
to transfer historical information. Specifically, different from
previous works that map point clouds to one view, we argue
that various viewpoints provide more holistic observations of
dynamic objects. Thus, we propose a multi-view encoder that
uses a cascaded structure to iteratively get dense appearance
from RV and perceive intuitive motion on BEV, resulting in
more discriminative features of moving objects (in Fig. 3(b)).
Meanwhile, during BEV encoding, we introduce asymmetric
convolution with decoupled strategy to better capture vertical
and horizontal motion. Then, we use attention mechanism to
implement temporal fusion that aligns features from different
times and conveys spatial prior to current inference. Besides,
due to the inherent uncertainty of neural networks, the output
of segmentation decoder could be inconsistent across frames
(Fig. 1(c)). To solve this issue, we propose voting mechanism
as post-processing to optimize predicted labels. Its core idea
is to statistically analyze long-term motion states at voxel and
instance levels, and then select the most likely state to update
raw point-wise forecasts. In this way, the previous results can
be used to refine current predictions, enhancing the temporal
continuity and spatial completeness of segmentation together.

In summary, the contributions of our work are as follows:
• We present a novel streaming framework called Stream-

MOS, which exploits short-term and long-term memory
to construct associations among inferences and improve
the integrity and continuity of predictions in MOS task.

• We propose a multiple projection architecture to capture
object motion and complete appearance from different
views. We introduce a multi-level voting mechanism to
refine segmentation results for every voxel and instance.

• The experimental results confirm that our StreamMOS
outperforms the previous state-of-the-art on the test sets
of SemanticKITTI by 1.1% IoU and Sipailou Campus by
1.7% IoU, while achieving competitive running time.

II. RELATED WORK

A. Geometric-based Algorithms

The initial LiDAR-based MOS algorithms can be referred
to as the geometric-based approaches, which typically build
the map in advance and remove any dynamic objects through
estimating occupancy probability and determining visibility.
For example, Schauer et al. [10] proposed a ray casting-based
approach that counted the hits and misses of scans to update
the occupancy situation of the grid map. Afterwards, Pagad et
al. [11] constructed an occupancy octree map and proposed a
probability update mechanism to obtain clean point clouds by
considering the occupancy history. Despite getting promising
results, [10], [11] suffer extensive computational burden due
to the ray casting and updating voxel one by one. To improve
efficiency, several visibility-based [12], [13], [14] algorithms
have been developed. Pomerleau et al. [12] identified moving

objects by checking whether the points of the pre-built map
are occluded by the points in the query frame. Meanwhile, to
avoid mismarked ground points as dynamic reported in [12],
Kim et al. [13] retained ground points from removed points
using a multi-resolution reverting algorithm. Moreover, Lim
et al. [15] introduced a visibility-free approach that removed
moving traces by computing pseudo occupancy ratio between
the query scan and the submap in each grid. Building on [15],
Zhang et al. [16] proposed a height coding descriptor, while
Lim et al. [17] introduced instance segmentation to maximize
the preservation of static points. Although the above methods
clean maps well, they are performed offline due to requiring a
prior map, making them unsuitable for real-time applications.

B. Learning-based Algorithms
Recently, many studies have focused on utilizing learning-

based approaches to eliminate dynamic objects online, which
take only consecutive frame point clouds as input rather than
a pre-built map. Meanwhile, according to data representation,
these algorithms can be categorized into projection-based and
point-based methods. The former converts point clouds into
bird’s eye view (BEV) or range view (RV) images, while the
latter processes 3D raw points directly.

Specifically, for point-based algorithms, Mersch et al. [9]
adopted sparse 4D convolutions to process a series of LiDAR
scans and predicted moving objects in each frame. They also
employed a binary Bayes filter to fuse multiple predictions in
a sliding window. Subsequently, Kreutz et al. [18] proposed
an unsupervised approach to address MOS task in stationary
LiDAR and viewed it as a multivariate time series clustering
problem. Lately, Wang et al. [8] introduced InsMOS to unify
detection and segmentation of moving objects into a network,
so that the instance cues can be used to improve segmentation
integrity. Although they achieved promising performance, the
feature extraction of numerous points in [8] may lead to high
computational costs.

Compared to the mentioned approaches, projection-based
algorithms [4], [5], [19], [6], [7] are generally more efficient
owing to handling ordered and dense data. For instance, Chen
et al. [4] mapped LiDAR scans into spherical coordinates and
generated residual images to extract dynamic information in
sequence. Sun et al. [5] used a dual-branch network to encode
spatio-temporal information and mitigated boundary blurring
problem with a point refinement module. In addition, Kim et
al. [19] achieved higher performance by using extra semantic
features. In contrast to the RV projection, Mohapatra et al. [6]
and Zhou et al. [7] utilized BEV projection to obtain a more
intuitive motion representation, but the serious loss of spatial
information still limited performance. To solve this issue, our
StreamMOS captures object motion from multiple views in a
series manner, allowing for complete observation of objects.
We also build memory banks to convey historical knowledge,
resulting in consistent segmentation across a long sequence.

III. METHODOLOGY

A. Framework Overview
LiDAR-based MOS aims to determine the motion state of

each point in the current scan based on the multi-frame point

LI et al.: STREAMMOS: STREAMING MOVING OBJECT SEGMENTATION WITH MULTI-VIEW PERCEPTION AND DUAL-SPAN MEMORY 3

B
E

V
 E

ncoder

P2B

Attention Module

Memory Feature

B2P

Temporal FusionFeature Encoder

Point-w
ise D

ecoder

Segmentation Decoder

Short-term
Memory Bank

P2B: Point to BEV B2P: BEV to Point C Concatenation

C

Point-w
ise E

ncoder

M
ulti-view

 E
ncoder

M
ulti-view

 E
ncoder

Auxiliary Loss

Voting Mechanism

Movable

Refined

Memory Predictions

Voting Module

Long-term
Memory Bank

C

B2P

Input

P2B

P2R: Point to Range R2P: Range to Point BEV feature Range feature Point feature

1t

t

t

1{ }M
t m m

t
2
t

1
t

0
t

1(,{ })N
t t n nP P

Deformable Attention

Add & Norm

Feed Forward

Add & Norm

Attention Module
t 1t

t

Asymmetric
Conv Blocks

R2P

Down
Sampling

Conv
Blocks

Range-view
Encoder

r

f f 1
t

P2R

C

Update

Retrieve

Update

Retrieve

C

BEV Encoder

b

2
t

Fig. 2. The overall architecture of StreamMOS. (a) Feature encoder adopts a point-wise encoder to extract point features and project them into BEV.
Then, the multi-view encoder with cascaded structure and asymmetric convolution is applied to encode motion features from different views. (b) Temporal
fusion utilizes an attention module to propagate memory feature to the current inference. (c) Segmentation decoder with parameter-free upsampling exploits
multi-scale features to predict class labels. (d) Voting mechanism leverages memory predictions to optimize the motion state of each 3D voxel and instance.

clouds {Pt−n}Nn=0. To this end, existing methods first adopt
the relative pose transformations {Tt−n→t}Nn=1 provided by
the LiDAR odometry to project historical scans {Pt−n}Nn=1

into ego car coordinate system of the current scan Pt and get
{P ′

t−n}Nn=1. Then, they usually feed Pt and {P ′
t−n}Nn=1 into

a network Ψ to fuse spatio-temporal information and predict
classification results Mt ∈ RV×3 for all points in Pt, where
V × 3 refers to the probability that V points belong to three
categories, including unknown, static and moving states.

Different from previous approaches that focus on temporal
fusion in a single inference, we extra consider the association
among multiple inferences and apply historical feature Ht−1

and predictions {Mt−m}Mm=1 to raise the quality of current
inference. Thus, our method formulates MOS task as follows:

Mt = Ψ(Pt, {P ′
t−n}Nn=1,Ht−1, {Mt−m}Mm=1) (1)

where N,M are the number of historical LiDAR frames and
forecasts. Meanwhile, the details of our network are shown in
Fig. 2. Specifically, given a series of scans, our StreamMOS
first leverages the multi-view encoder to capture motion cues
from the viewpoints of BEV and RV. Thereafter, we can get a
motion feature Ft that reflects spatial information of moving
objects in the current frame. Then, we use a temporal fusion
module to combine Ft with historical feature Ht−1 retained
in short-term memory. By doing this, some prior information
can be transferred to the current inference and further utilized
to decode movable objects Ot and coarse motion state Ct for
all points. Finally, we employ a voting mechanism to update
Ct using historical results {Mt−m}Mm=1 stored in long-term
memory and instance information derived from Ot, thereby
yielding the refined prediction Mt.

B. Multi-projection Feature Encoder
1) Preliminaries: Unlike the existing methods that project

point clouds into a single view, such as BEV [7] or RV [19],

we believe that mapping points to these views simultaneously
could capture more complete appearance and obvious motion
cues of dynamic objects. Meanwhile, as shown at the bottom
of Fig. 2, the points could be considered as the intermediate
carrier to transfer information between different perspectives.
For this purpose, we adopt Point-to-BEV (P2B) and Point-to-
Range (P2R) to map point features into 2D plane, while using
BEV-to-Point (B2P) and Range-to-Point (R2P) to collect the
point features from multiple planes. To be specific, assuming
that the kth 3D point in Pt is denoted as p3Dk = (xk, yk, zk),
the P2B projects it into a rectangular 2D grid and obtains its
coordinate (ub

k, v
b
k) in BEV. For the P2R, the point p3Dk with

3D cartesian coordinate is converted into spherical coordinate
psphk = (rk, θk, ϕk) and assigned to the 2D grid in RV with
coordinate (ur

k, v
r
k) [20], where rk, θk, ϕk represent distance,

zenith and azimuth angle of point p3Dk . The points falling into
the same grid undergo max-pooling to aggregate features. For
R2P and B2P, the grid features of RV and BEV are allocated
to 3D points using bilinear interpolation within nearby grids.

2) Network Structure: In the feature encoder, we first use
a lightweight PointNet [21] as point-wise encoder to process
point clouds (Pt, {P ′

t−n}Nn=1) and obtain En ∈ RV×C (n ∈
{t−N, ..., t}), where C means the number of channels. Then,
for the feature of each frame, we adopt P2B to project them
into BEV and concatenate them along the channel dimension
to get BEV feature G0

t ∈ RW b×Hb×(N+1)C , where W b, Hb

are the predefined width and height of BEV. Afterwards, we
feed G0

t into multi-view encoder (MVE) to extract temporal
information and capture object motion from different views.

In the lower part of Fig. 2, after downsampling BEV feature
Gl
t(l ∈ {0, 1}), we introduce an asymmetric convolution block

(ACB) to perceive the movement of objects. As shown in
Fig. 3(a), compared to the typical symmetric convolutional
kernel (e.g., 3×3), the kernel size of ACB has one side longer

4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED DECEMBER, 2024

(e.g., 3×5 and 5×3). Besides, it decouples feature extraction
into the horizontal and vertical directions, defined as follows:

f ′ = Conv3×3(Convh(f)⊙ Convv(f)) + f (2)

where f and ⊙ are feature map and concatenation operation.
Convh and Convv mean asymmetric convolutions, which can
expand the receptive field and improve perception ability for
moving objects since they usually have distinct motion in a
specific direction. After that, as displayed in Fig. 2, we apply
B2P and P2R to project BEV feature into the range view and
then use convolution layer as range-view encoder to generate
another motion feature Gr, which is remapped into BEV and
combined with Gb along channel dimension. The multi-view
feature interaction is then executed in the next encoder layer.

As a result, complete motion information can be extracted
through cascaded projection and encoding within two MVEs
and an additional BEV encoder, thereby obtaining a discrim-
inative motion feature Ft. Specially, we illustrate multi-view
features of different MVE layers in Fig. 3(b). It proves that
MVE can extract consistent object information across various
perspectives, while the deeper layer is capable of suppressing
noise and preserving clearer motion features.

C. Short-term Temporal Fusion

The purpose of this part is to transfer the memory feature
Ht−1 from the last inference to the present, so that historical
spatial states of objects can be retrieved to guide the network
in inferring object motion at time t. To achieve this, we first
build short-term memory bank as a bridge to store Ht−1 and
connect adjacent inferences. Then, since Ft and Ht−1 are not
in the same coordinate system, we adopt an attention module
with learnable offsets [22] to adaptively find the relationship
between two features and combine them by attention weight.
Specifically, Ht−1 is fed into two linear layers to produce K
attention weights Ak and sampling offsets ∆gk. Later, based
on the offsets ∆gk and coordinates gk of reference points in
Ft, a bilinear interpolation is used to gather reference values
Gk from Ft. Finally, Gk is weighted by Ak to get enhanced
feature Ĥt. The above process can be formulated as follows:

Ak = Softmax(Linear(Ht−1)), ∆gk = Linear(Ht−1) (3)

Gk = S(Ft, gk +∆gk) (4)

Ĥt =

L∑
l=1

Wl(

K∑
k=1

Alk ·Glk) (5)

The L and K are the number of attention heads and reference
points, respectively, while S(·) and Wl represent the bilinear
sampling and learnable weight of multi-head attention. Next,
the Ĥt is processed by normalization layer and feed-forward
network (FFN) to generate a updated Ht at the current time:

H̃t = LN(Ĥt +Ht−1), Ht = LN(FFN(H̃t) + H̃t) (6)

Here, LN is the layer normalization. Then, Ht is used for two
purposes: it replaces Ht−1 to update the short-term memory,
and it is fed into the decoder to predict segmentation results.

C

(a) The procedure of Asymmetric Convolution Block

Dynamic Object

Static Object

Asymmetric Convolution Symmetric Convolution

Moving

Direction

(b) The visualization of BEV and range-view features at different multi-view encoder layers

Layer 0

Layer 1

Layer 0 Layer 1

+

f

f

Fig. 3. Illustration of asymmetric convolution and multi-view features.

D. Reduced-parameter Segmentation Decoder

To distinguish the static and dynamic points, the previous
methods [7], [5], [8] usually leverage a UNet-like decoder to
upsample multi-scale features progressively by convolutions.
However, to reduce complexity and storage costs of network,
we introduce a lightweight decoder, which first employs bi-
linear interpolation to convert the size of multi-scale features
Gi
t (i ∈ 1, 2) and Ht into a uniform height Hb/2 and width

W b/2. For each upsampled feature, we employ an auxiliary
head to predict moving objects in BEV and exploit auxiliary
loss as the constraint, which can guarantee that features from
different scales are aligned and decoded well. Next, we adopt
B2P to convert upsampled features into point features one by
one and combine them to get Êt ∈ RV×D. Finally, in addition
to decoding the coarse motion states Ct ∈ RV×3 of LiDAR
points Pt, the point-wise decoder also outputs the probability
Ot ∈ RV×2 that points belong to movable objects (e.g., cars,
bicycles) and static backgrounds (e.g., roads), represented as:

Ct = head1(Conv(Êt)⊙ Et),Ot = head2(Conv(Êt)⊙ Et) (7)

where head1 and head2 consist of several convolution blocks,
and Et is the feature from point-wise encoder. According to
discrete classification labels Ot, we can acquire the attributes
of instance, like location and size, through clustering and use
them to optimize Ct in the subsequent voting stage.

E. Long-term Voting Mechanism

Most existing approaches [4], [5], [19] focus on improving
the quality of a single inference through modifying network
structure. Nevertheless, in light of the inexplicability and data
dependency of neural networks, this strategy may be limited.
For example, for a parked car shown in Fig. 1(c), the model
may predict it as stationary in one frame and moving in other
frames. Meanwhile, due to lacking instance-level perception
ability, the network may generate inconsistent results for the
different parts of an object, particularly for cars (see Fig. 5).

To solve these problems, we construct a long-term memory
bank of length M to store historical predictions and propose
a voting module consisting of the voxel-based voting (VBV)
and instance-based voting (IBV), which can function as post-
processing to correct errors in the current predicted labels Ct

LI et al.: STREAMMOS: STREAMING MOVING OBJECT SEGMENTATION WITH MULTI-VIEW PERCEPTION AND DUAL-SPAN MEMORY 5

(b) The structure of instance-based voting

Movable prediction Foreground points

DBSCAN

Movable object boxes

Output Memory predictions

Crop

Final refined prediction

Vote

Instance results

(a) The details of voxel-based voting

Memory predictions

Current prediction

Dynamic

Static
Vote

Fill

Update

Update

Update

t

1{ }M
t m m

t

t

t̂ 1{ }M
t m m tfrom VBV

Fig. 4. The details of our voting mechanism. It uses voxel-based voting
(VBV) and instance-based voting (IBV) to refine coarse predictions.

using historical results {Mt−m}Mm=1 and movable labels Ot.
Note that Mt−m (m = 1, ...,M) with coordinates of Pt−m

is projected into the coordinate system of Pt to yield M′
t−m

through the pose transformations Tt−m→t in advance.
1) Voxel-based voting: Motivated by TFNet [23], we first

obtain historical predictions {M′
t−m}Mm=1 and current forecast

Ct in the same coordinate system. Then, we divide points Pt

into voxels with fixed size and fill (Ct, {M′
t−m}Mm=1) into

each voxel. Next, as shown in Fig. 4(a), the most frequently
predicted label acts as motion state for all points in the same
voxel and incorrect labels will be updated. We summarize the
above procedure of VBV as: Ω(Ct, {M′

t−m}Mm=1) 7→ Ĉt.
2) Instance-based voting: Although VBV can ensure the

consistency of motion states within a local area and achieve
performance improvement in Tab. IV, it is difficult to achieve
instance-level unity, as shown by the output Ĉt from VBV in
Fig. 4(b). To solve this, we propose an instance-based voting
based on clustering. When given the predicted probability Ot

from decoder, we can pick out the foreground points P ′
t from

Pt and adopt DBSCAN [24] to split P ′
t into S clusters. Then,

according to the coordinates of points in each cluster, we can
compute S minimum 3D bounding boxes to cover all objects.
Thus, we can further crop out instance-level predictions from
Ĉt and memory predictions {M′

t−m}Mm=1. Finally, similar to
voxel-based voting, we adopt the class label with the highest
quantity as the motion state for all points in the instance and
get the final prediction as: Φ(Ĉt, {M′

t−m}Mm=1,Ot) 7→ Mt.
Finally, when a new refined prediction Mt is output from

voting mechanism, we append it to long-term memory while
discarding the oldest result Mt−M . As a result, compared to
relying on the network’s adaptive learning, voting mechanism
can explicitly suppress incorrect predictions and improve the
consistency of segmentation based on a statistical analysis of
historical predictions at the voxel and instance levels.

F. Loss Functions

To ensure the network can be fully optimized, we separate
the training process into two steps. In the first stage, we only
train our network without predicting movable objects in the
decoder. Meanwhile, following the previous works [7], [5],

we introduce the weighted cross-entropy (Lwce) and Lovász-
Softmax (Lls) [25] losses to supervise network:

L = λ1Lwce + λ2Lls, Ls1 = L(y, ŷ) + λ3

3∑
i=1

L(ybi , ŷ
b
i) (8)

where λ1, λ2, λ3 mean the weights for losses while y and ŷ
are the ground truth and predicted results of points. L(ybi , ŷ

b
i)

denotes the auxiliary losses for BEV predictions. Moreover,
in the second stage, we freeze pre-trained parameters that are
optimized in the 1st stage and only train the rest of network
to predict movable objects using the following loss function:

Ls2 = λ1Lwce(x, x̂) + λ2Lls(x, x̂) (9)

where x and x̂ represent ground-truth labels and predictions
for movable objects.

IV. EXPERIMENTS

A. Experimental Settings

Datasets. On SemanticKITTI-MOS [4] dataset and Sipailou-
Campus [7] dataset, we compare segmentation performance
with previous methods and conduct extensive ablation studies.
The SemanticKITTI-MOS dataset is collected by a Velodyne
HDL-64E LiDAR and contains a total of 22 sequences with
labeled point clouds that are remapped from 28 semantic
classes into 3 types of motion states. Following the previous
algorithms [7], [5], [8], we divide the sequences 00-07, 09-10
for training, sequence 08 for validation and sequences 11-21
for testing. For the Sipailou Campus dataset that is developed
on solid-state LiDAR, we follow the implementation of [7] to
split dataset into 5 training sequences, 1 validation sequence
and 2 test sequences from 26,279 frames.
Evaluation Metric. Consistent with present approaches [8],
[5], we employ the Jaccard Index or Intersection-over-Union
(IoU) metric [26] over dynamic objects to measure the MOS
performance, which can be denoted as:

IoU =
TP

TP + FP + FN
(10)

where TP, FP, and FN mean the number of true positive, false
positive, and false negative predictions for dynamic category.

B. Implementation Details

In data processing, we leverage widely used data augmen-
tation, such as random rotation, flipping and slight translation
to enrich the training data, which plays an important role in
improving model generalization. Meanwhile, as mentioned in
Sec. III-F, we optimize the network using two-stage training
strategy. For the 1st stage, we train the model for 48 epochs
on NVIDIA RTX 4090 GPUs using an SGD optimizer with
an initial learning rate of 0.02, which is decayed by 0.1 every
10 epochs. For the 2nd stage, we solely optimize the network
for 10 epochs with a learning rate of 0.02. Furthermore, each
LiDAR scan is limited to [-50m, 50m] for the X and Y axes
and [-4m, 2m] for the Z axis. The number of points in each
scan is randomly downsampled or padded to V = 1.3 × 105.
The default values for the number of attention heads L and
reference points K are both set to 4.

6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED DECEMBER, 2024

C
as

e
1

(b) MotionSeg3D, v2 (c) InsMOS* (d) StreamMOS-VI* (Ours) (e) Ground truth(a) Image (b) MotionSeg3D, v2 (c) InsMOS* (d) StreamMOS-VI* (Ours) (e) Ground truth(a) Image

C
as

e
2

C
as

e
3

C
as

e
4

Fig. 5. The visualization of MOS results on the SemanticKITTI validation set. Incorrect predictions are highlighted, with false negatives marked by
green circles and false positives by blue circles. Best viewed in color and zoom.

TABLE I
PERFORMANCE COMPARISON ON SEMANTICKITTI VALIDATION AND

TEST SETS. * DENOTES METHODS THAT EXPLOIT SEMANTIC LABELS. †
INDICATES METHODS TRAINED ON BOTH SEMANTICKITTI AND

KITTI-ROAD DATASETS.

Methods Source IoU (Validation) IoU (Test)

KPConv ICCV 19 - 60.9
SpSequenceNet CVPR 20 - 43.2

LiMoSeg arXiv 21 52.6 -
LMNet RA-L 21 66.4 58.3

Cylinder3D CVPR 21 66.3 61.2
AutoMOS RA-L 22 - 54.3

MotionSeg3D, v1 IROS 22 68.1 62.5
MotionSeg3D, v2 IROS 22 71.4 64.9

4DMOS RA-L 22 77.2 65.2
MotionBEV, w/o delay RA-L 23 68.1 63.9
MotionBEV, w/ delay RA-L 23 76.5 69.7

StreamMOS-V - 78.3 73.1
LMNet* RA-L 21 67.1 62.5

RVMOS* RA-L 22 71.2 74.7
InsMOS* IROS 23 73.2 70.6

InsMOS*† IROS 23 - 75.6
MF-MOS* ICRA 24 76.1 76.7

StreamMOS-VI* - 81.6 77.8

C. Quantitative Results

Comparison with Previous Methods. We first evaluate our
StreamMOS on SemanticKITTI-MOS benchmark. To ensure
fairness, our method is presented in two versions in Tab. I to
make settings as consistent as possible with previous works.
Specifically, (a) StreamMOS-V indicates the network that is
trained in the 1st stage and uses voxel-based voting as post-
processing. (b) StreamMOS-VI* means performing extra 2nd

stage training and using instance-based voting that relies on
movable object predictions. Then, our methods are compared
with existing algorithms, which can be classified as whether
semantic annotations are utilized. Specially, the two versions
of MotionSeg3D [5] refer to using kNN or point refinement
as post-processing. Moreover, “w/ delay” signifies exploiting
point cloud frames within the time window of [t, t + N] to
estimate dynamic objects in the t frame. Note that following
MotionBEV [7], our results shown in Tab. I are derived from
training original SemanticKITTI without any additional data.

As illustrated in Tab. I, our streaming method outperforms

TABLE II
PERFORMANCE COMPARISON ON SIPAILOU CAMPUS DATASET.

Methods Source IoU (Validation) IoU (Test)

LMNet RA-L 21 54.3 56.2
MotionSeg3D, v2 IROS 22 65.6 66.8

4DMOS RA-L 22 87.3 88.9
MotionBEV RA-L 23 89.2 90.8

StreamMOS-V - 90.9 92.5

TABLE III
COMPARISON OF RUNNING TIMES (MS) WITH PREVIOUS METHODS.

4DMOS MF-MOS* MotionSeg3D, v1 MotionSeg3D, v2
86 96 42 117

InsMOS* RVMOS* StreamMOS-V StreamMOS-VI*
120 29 62 96

previous works in most cases. Specifically, our StreamMOS-
V exceeds 4DMOS [9] by 1.1% and 7.9% in validation and
test. We think that compared with using binary Bayes filter to
merge historical results in 4DMOS, our method additionally
considers historical feature from the last inference, which can
serve as strong spatial priors to improve prediction quality. At
the same time, our StreamMOS-VI* surpasses InsMOS* [8]
and MF-MOS* [27] on the validation set significantly (↑8.4%
and ↑5.5%) by instance-based voting. Finally, due to the lack
of semantic annotation in Sipailou-Campus dataset, we solely
list [4], [7], [5], [9] in Tab. II and confirm the effectiveness
of StreamMOS-V, even when using a solid-state LiDAR with
a narrow field of view and non-repetitive scanning patterns.
Inference Speed. Although our method uses attention mech-
anism to construct feature association between inferences and
merge multiple historical predictions in voting mechanism, it
still keeps competitive running time compared with previous
approaches in Tab. III. We believe this is the contribution of
projection-based backbone, lightweight deformable attention
and parameter-free upsampling in decoder, which enables our
method strike a balance between speed and performance.

D. Qualitative Analysis

Advantageous Cases. In Fig. 5, we exhibit the segmentation
results in various scenarios to compare the previous methods

LI et al.: STREAMMOS: STREAMING MOVING OBJECT SEGMENTATION WITH MULTI-VIEW PERCEPTION AND DUAL-SPAN MEMORY 7

TABLE IV
THE EFFECT OF DIFFERENT MODULES IN SEMANTICKITTI VALIDATION.

TF MVE VBV IBV IoU [%] ∆

A1 67.1 -
A2 ! 73.2 +6.1
A3 ! ! 77.1 +10.0
A4 ! ! ! 78.3 +11.2
A5 ! ! ! 81.3 +14.2
A6 ! ! ! ! 81.6 +14.5

TABLE V
ABLATION EXPERIMENT ON MULTI-VIEW ENCODER OF STREAMMOS-V.

RV BEV ACB Parallel Series IoU [%]

B1 ! 70.3
B2 ! 74.2
B3 ! ! ! 77.5
B4 ! ! ! 74.8
B5 ! ! ! ! 78.3

TABLE VI
ABLATION EXPERIMENT ON TEMPORAL FUSION OF STREAMMOS-V.

Strategy IoU [%] ∆

C1 w/o Temporal Fusion 72.1 -6.2
C2 Cross-attention 73.0 -5.3
C3 Concatenation 74.8 -3.5
C4 Addition 75.6 -2.7
C5 Deform-attention 78.3 -

intuitively. Although MotionSeg3D adopts a point refinement
module to alleviate boundary-blurring problem, it still makes
mistakes when dealing with distant objects, as shown in the
4th row. Besides, MotionSeg3D tends to produce incomplete
segmentation in the 3rd row due to lacking the instance-level
sensing. Despite adding instance detection like InsMOS* can
improve segmentation integrity, it aggravates negative impact
when the prediction is incorrect, as illustrated in the 1st, 2nd

and 3rd rows. Unlike these algorithms, our StreamMOS-VI*
combines multi-view observations to improve the perception
of objects at different distances. Then, we build relationships
among several inferences by integrating memory feature and
predictions to enhance the segmentation integrity and reduce
incorrect results. Thus, we get superior performance in Fig. 5.
Failure Cases. Fig. 6 displays that the inaccurate ego poses
{Tt−n→t}Nn=1 misalign multi-frame point clouds, causing the
network to incorrectly infer that the object has moved. While
our method mitigates this issue compared to InsMOS*, errors
persist as our voting mechanism still relies on precise poses.
Thus, we think that developing a MOS model that eliminates
the need for pose or implicitly learns ego-motion could be a
promising research direction in the future.

E. Ablation Study

This part conducts ablation studies on the SemanticKITTI
validation set to prove the effectiveness of our method.
Model Components. As shown in Tab. IV, our StreamMOS
mainly includes some crucial modules: temporal fusion (TF),
multi-view encoder (MVE), voxel-based voting (VBV), and
instance-based voting (IBV). To understand their importance
in overall performance, we first remove all the above modules
from our StreamMOS and regard the rest as a baseline in A1.
After building feature correlations between inferences by TF,
the IoU increases by 6.1% in A2. Moreover, benefiting from
capturing multi-view motion cues from BEV and RV, MVE

InsMOS*

StreamMOS-VI* (Ours)Ground truth

Misaligned

Multiple frames

Fig. 6. A failure case caused by inaccurate ego pose in SemanticKITTI.

(a)

Fig. 7. Ablation study on the time window length of voting mechanism.

4DMOS (N = 10)
InsMOS* (N = 10)

Fig. 8. The effect of frame number and BEV size on the SreamMOS-V.

brings further improvement. Then, due to introducing object-
level perception, instance-based voting in A5 shows a greater
performance than voxel-based in A4, which only focuses on
limited areas in the 3D cube. Finally, we can achieve optimal
performance by combining them into a refinement procedure
from voxel to instance, proving that effectively utilizing long-
term predictions is the key element to the LiDAR MOS task.
Multi-view Encoder. We compare several multi-view encod-
ing strategies in Tab. V. From the B1 and B2, we can observe
that when encoding object motion only on a single view, the
BEV representation achieves better results compared to RV
due to global perspective and motion consistency. Then, we
divide encoder into BEV and RV branches and extract multi-
view features in series (B3), leading IoU to further increase
and exceed parallel mode (B4) by 2.7%. We think that series
manner may be more suitable for deriving consistent moving
features from different views owing to progressive encoding.
Furthermore, using asymmetric convolution block (ACB) can
result in 0.8% improvement in B5, proving the advantage of
decoupling horizontal and vertical encoding.
Temporal Fusion. The strategy of propagating the historical
feature into current inference will affect segmentation quality
as demonstrated in Tab. VI. First, we can observe that lacking
temporal fusion to provide prior information leads to unideal
results (↓6.2%). Then, compared with adopting concatenation
and addition directly to merge features in different coordinate
systems, deformable attention could align features adaptively
by learnable offsets and gain the advantage of 3.5% and 2.7%
IoU. Moreover, it is worth noting that cross-attention gets the

8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED DECEMBER, 2024

worst result since redundant global attention may cause a bad
effect. In contrast, deformable attention concentrates on local
feature to avoid model overfitting and save computation load.
Time Window Length. The time window length determines
how long ago predictions can be used by voting mechanism.
Thus, we conduct experiments on the time window length to
choose the optimal setting for our algorithm. As displayed in
Fig. 7, the performance will increase rapidly until the length
M of time window reaches 8. Despite continuing to raise the
length could result in a slight improvement, it requires more
time consumption. Thus, we opt for M = 8 as our default.
Other Hyper-parameter Settings. In Fig. 8, we explore the
impact of frame number and BEV resolution on performance.
We can observe that the optimal BEV size (W b, Hb) is 512×
512. Meanwhile, too small BEV resolution would cause the
network to be unable to capture the motion of small objects,
while excessively large resolution leads to sensitivity to slight
disturbances. Besides, a larger BEV image will contain more
numerous empty grids, which may dilute useful information.

Furthermore, as shown in Fig. 8(b), compared to previous
approaches [8], [9] that require a lot of frames to extract the
spatial-temporal features, our method only relies on 3 frames
to achieve the best result. We think this is due to the effective
reuse of historical feature and predictions in temporal fusion
and voting, which bring rich prior knowledge to the network.
Meanwhile, feeding too many frames into the network would
cause information redundancy and result in degradation.

V. CONCLUSION

In this paper, we analyze the limitations of existing MOS
methods and propose a novel streaming structure, which uses
memory bank as a bridge to transfer prior information among
inferences while capturing the appearance and motion feature
of objects from multiple views. To correct false predictions,
we propose a voting mechanism to integrate historical results
at the voxel and instance levels. Experimental results indicate
that our method performs competitively in diverse aspects.

REFERENCES

[1] J. Zhang and S. Singh, “Loam: Lidar odometry and mapping in real-
time.,” in Robotics: Science and systems, vol. 2, pp. 1–9, Berkeley, CA,
2014.

[2] B. Guo, N. Guo, and Z. Cen, “Obstacle avoidance with dynamic
avoidance risk region for mobile robots in dynamic environments,” IEEE
Robotics and Automation Letters, vol. 7, no. 3, pp. 5850–5857, 2022.

[3] P. Chen, J. Pei, W. Lu, and M. Li, “A deep reinforcement learning based
method for real-time path planning and dynamic obstacle avoidance,”
Neurocomputing, vol. 497, pp. 64–75, 2022.

[4] X. Chen, S. Li, B. Mersch, L. Wiesmann, J. Gall, J. Behley, and C. Stach-
niss, “Moving object segmentation in 3d lidar data: A learning-based
approach exploiting sequential data,” IEEE Robotics and Automation
Letters, vol. 6, no. 4, pp. 6529–6536, 2021.

[5] J. Sun, Y. Dai, X. Zhang, J. Xu, R. Ai, W. Gu, and X. Chen,
“Efficient spatial-temporal information fusion for lidar-based 3d moving
object segmentation,” in 2022 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 11456–11463, IEEE, 2022.

[6] S. Mohapatra, M. Hodaei, S. Yogamani, S. Milz, H. Gotzig, M. Simon,
H. Rashed, and P. Maeder, “Limoseg: Real-time bird’s eye view based
lidar motion segmentation,” arXiv preprint arXiv:2111.04875, 2021.

[7] B. Zhou, J. Xie, Y. Pan, J. Wu, and C. Lu, “Motionbev: Attention-
aware online lidar moving object segmentation with bird’s eye view
based appearance and motion features,” IEEE Robotics and Automation
Letters, 2023.

[8] N. Wang, C. Shi, R. Guo, H. Lu, Z. Zheng, and X. Chen, “Insmos:
Instance-aware moving object segmentation in lidar data,” in 2023
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 7598–7605, IEEE, 2023.

[9] B. Mersch, X. Chen, I. Vizzo, L. Nunes, J. Behley, and C. Stachniss,
“Receding moving object segmentation in 3d lidar data using sparse
4d convolutions,” IEEE Robotics and Automation Letters, vol. 7, no. 3,
pp. 7503–7510, 2022.

[10] J. Schauer and A. Nüchter, “The peopleremover—removing dynamic
objects from 3-d point cloud data by traversing a voxel occupancy grid,”
IEEE robotics and automation letters, vol. 3, no. 3, pp. 1679–1686,
2018.

[11] S. Pagad, D. Agarwal, S. Narayanan, K. Rangan, H. Kim, and G. Yalla,
“Robust method for removing dynamic objects from point clouds,”
in 2020 IEEE International Conference on Robotics and Automation
(ICRA), pp. 10765–10771, IEEE, 2020.

[12] F. Pomerleau, P. Krüsi, F. Colas, P. Furgale, and R. Siegwart, “Long-term
3d map maintenance in dynamic environments,” in 2014 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pp. 3712–3719,
2014.

[13] G. Kim and A. Kim, “Remove, then revert: Static point cloud map
construction using multiresolution range images,” in 2020 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
pp. 10758–10765, IEEE, 2020.

[14] R. Ambruş, N. Bore, J. Folkesson, and P. Jensfelt, “Meta-rooms:
Building and maintaining long term spatial models in a dynamic world,”
in 2014 IEEE/RSJ International Conference on Intelligent Robots and
Systems, pp. 1854–1861, 2014.

[15] H. Lim, S. Hwang, and H. Myung, “Erasor: Egocentric ratio of pseudo
occupancy-based dynamic object removal for static 3d point cloud
map building,” IEEE Robotics and Automation Letters, vol. 6, no. 2,
pp. 2272–2279, 2021.

[16] J. Zhang and Y. Zhang, “Erasor++: Height coding plus egocentric ratio
based dynamic object removal for static point cloud mapping,” in 2024
IEEE International Conference on Robotics and Automation (ICRA),
pp. 4067–4073, 2024.

[17] H. Lim, L. Nunes, B. Mersch, X. Chen, J. Behley, H. Myung, and
C. Stachniss, “Erasor2: Instance-aware robust 3d mapping of the static
world in dynamic scenes,” in Robotics: Science and Systems (RSS 2023),
IEEE, 2023.

[18] T. Kreutz, M. Mühlhäuser, and A. S. Guinea, “Unsupervised 4d lidar
moving object segmentation in stationary settings with multivariate occu-
pancy time series,” in Proceedings of the IEEE/CVF Winter Conference
on Applications of Computer Vision, pp. 1644–1653, 2023.

[19] J. Kim, J. Woo, and S. Im, “Rvmos: Range-view moving object seg-
mentation leveraged by semantic and motion features,” IEEE Robotics
and Automation Letters, vol. 7, no. 3, pp. 8044–8051, 2022.

[20] X. Li, G. Zhang, H. Pan, and Z. Wang, “Cpgnet: Cascade point-
grid fusion network for real-time lidar semantic segmentation,” in
2022 International Conference on Robotics and Automation (ICRA),
pp. 11117–11123, IEEE, 2022.

[21] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning on
point sets for 3d classification and segmentation,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2017.

[22] X. Zhu, W. Su, L. Lu, B. Li, X. Wang, and J. Dai, “Deformable detr:
Deformable transformers for end-to-end object detection,” 2021.

[23] R. Li, S. Li, X. Chen, T. Ma, J. Gall, and J. Liang, “Tfnet: Exploiting
temporal cues for fast and accurate lidar semantic segmentation,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 4547–4556, 2024.

[24] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, et al., “A density-based
algorithm for discovering clusters in large spatial databases with noise,”
in kdd, vol. 96, pp. 226–231, 1996.

[25] M. Berman, A. R. Triki, and M. B. Blaschko, “The lovász-softmax loss:
A tractable surrogate for the optimization of the intersection-over-union
measure in neural networks,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 4413–4421, 2018.

[26] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisser-
man, “The pascal visual object classes (voc) challenge,” International
journal of computer vision, vol. 88, pp. 303–338, 2010.

[27] J. Cheng, K. Zeng, Z. Huang, X. Tang, J. Wu, C. Zhang, X. Chen,
and R. Fan, “Mf-mos: A motion-focused model for moving object
segmentation,” in 2024 IEEE International Conference on Robotics and
Automation (ICRA), pp. 12499–12505, 2024.

	Introduction
	Related Work
	Geometric-based Algorithms
	Learning-based Algorithms

	Methodology
	Framework Overview
	Multi-projection Feature Encoder
	Preliminaries
	Network Structure

	Short-term Temporal Fusion
	Reduced-parameter Segmentation Decoder
	Long-term Voting Mechanism
	Voxel-based voting
	Instance-based voting

	Loss Functions

	Experiments
	Experimental Settings
	Implementation Details
	Quantitative Results
	Qualitative Analysis
	Ablation Study

	Conclusion
	References

