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Exploiting More Information in Sparse Point Cloud
for 3D Single Object Tracking

Yubo Cui , Jiayao Shan , Zuoxu Gu, Zhiheng Li, and Zheng Fang , Member, IEEE

Abstract—3D single object tracking is a key task in 3D computer
vision. However, the sparsity of point clouds makes it difficult to
compute the similarity and locate the object, posing big challenges
to the 3D tracker. Previous works tried to solve the problem and
improved the tracking performance in some common scenarios, but
they usually failed in some extreme sparse scenarios, such as for
tracking objects at long distances or partially occluded. To address
the above problems, in this letter, we propose a sparse-to-dense
and transformer-based framework for 3D single object tracking.
First, we transform the 3D sparse points into 3D pillars and then
compress them into 2D bird’s eye view (BEV) features to have a
dense representation. Then, we propose an attention-based encoder
to achieve global similarity computation between template and
search branches, which could alleviate the influence of sparsity.
Meanwhile, the encoder applies the attention on multi-scale fea-
tures to compensate for the lack of information caused by the
sparsity of point cloud and the single scale of features. Finally,
we use set-prediction to track the object through a two-stage de-
coder which also utilizes attention. Extensive experiments show
that our method achieves very promising results on the KITTI and
NuScenes datasets.

Index Terms—Point cloud, 3D object tracking, deep learning.

I. INTRODUCTION

G IVEN the initial target object in the first frame, 3D sin-
gle object tracking aims to estimate the 3D state of the
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target object in subsequent frames. Therefore, 3D single object
tracking has a wide range of applications, such as autonomous
driving and robotics. Meanwhile, with the development of 3D
computer vision [1], [2], [3], [4], [5], [6], 3D single object
tracking with point clouds received increasing attention. Similar
to visual tracking, most point-cloud-based 3D single object
tracking methods [7], [8], [9], [10] also adopt the Siamese
pipeline, that is, by cropping the previous and current points
based on the previous predicted box to get the template and
search point clouds, and then inputting template and search point
clouds to predict the state of the object based on their similarity.
However, compared to dense images, point clouds are usually
sparse, which is not only unfavorable for similarity computation,
but also for target localization for 3D single object tracking.

To address the sparsity problem, previous works usually
focus on enhancing the feature representation. For example,
BAT [9] and V2B [11] enhance the features with box information
and shape information respectively, to improve the robustness
against sparseness. However, since they both adopt a point-based
pipeline, they usually need to randomly downsample the points
to a fixed number, such as 1024 for the search point cloud and
512 for the template point cloud, to pass through the network,
which may lose the geometric information. LTTR [12] takes
voxel-based pipeline and transformer to enhance the features.
Nevertheless, they only consider the top-level extracted features
but ignore the others, leading to information loss. Meanwhile,
their transformer finally outputs region-level features, which are
too coarse to address the sparsity problem of point cloud.

Therefore, we believe that a good 3D tracker should have
following abilities: First, the input representation should retain
as much original information as possible. Second, because of
the sparsity of points, the fusion module should utilize as many
features from backbone as possible to have a better similarity.
Third, the similarity computation should fully exploit the corre-
lation information to have a better measurement.

Based on the above analyses, in this letter, we propose
a sparse-to-dense and transformer-based 3D tracking frame-
work, which is named SMAT (Sparse-to-dense and Multi-scale
Attention Tracker) and shown in Fig. 1. Specially, we first
transform the input points to pillars and apply a 2D backbone to
extract features. This transformation could avoid information
loss due to downsampling and keep the geometric structure
information of the original points. Meanwhile, the extracted
feature could have a dense 2D representation, which could
alleviate the sparsity problem of the point cloud. We then pro-
pose a multi-scale attention-based encoder to fully exploit the
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Fig. 1. The overall architecture of our proposed SMAT. We first transform
the sparse point cloud to dense BEV features, and use a shared 2D backbone
to extract 2D dense features. We then propose an encoder MAE to compute the
two branches similarity at each scale and fuse the multi-scale features to fully
exploit the information. Finally, we predict the box of object by set-prediction.

correlation information and compute the similarity. Different
from previous works that usually ignore the shallow features, we
retain all scale features to compute the similarity and then fuse
them together. Thus, the similarity could include texture-rich
information from shallow features and semantic-rich informa-
tion from deep features. Meanwhile, the encoder uses attention to
compute the similarity, which could have more consideration of
global correlation information. The multi-head mechanism and
global dependence modeling ensure the similarity could have
a more comprehensive measurement. Moreover, for a simple
but efficient framework, we adopt an attention-based two-stage
decoder to track object by set-prediction. Comprehensive eval-
uation results show that our SMAT achieves the state-of-the-art
results on KITTI [13] and NuScenes [14] datasets. Overall, our
contributions are as follows:
� We propose a sparse-to-dense and transformer-based

framework, which adopts an encoder-decoder paradigm, to
handle the sparsity challenge in 3D single object tracking.

� We propose a novel encoder to replace the fusion module
in the previous similarity-based tracker [7], [8], [9], which
utilizes the attention at multi-scale features to fully exploit
the information from the original sparse point cloud.

� Our method achieves promising performance on KITTI
and NuScenes datasets. Extensive ablation studies also
verify the effectiveness of our improvements.

The rest of this letter is organized as follows. Section II
reviews related work on object tracking and transformer.
Section III described the overall algorithm framework and de-
tails of the network. The experimental results of the proposed
method on KITTI and NuScenes datasets are shown in Sec-
tion IV. Finally, Section V concludes the letter.

II. RELATED WORK

A. 2D Siamese Tracking

Recently, the Siamese-like networks [15], [16], [17], [18],
[19], [20], [21], [22], [23] have been widely used in visual object
tracking. The Siamese-like networks usually have two branches
for template and search, and extract their features with a shared
backbone at first. Then, they fuse the features from two branches
by computing their similarity, such as cross-correlation, and use
the fused features to regress boxes. However, because of the
difference between point clouds and images, these methods are
inapplicable to 3D object tracking with point clouds.

B. 3D Single Object Tracking

SC3D [7] is the pioneering work in 3D single object tracking
with point clouds. They generate a set of candidate point clouds
by Kalman Filter and select the tracked one based on a cosine
similarity score. However, SC3D only takes a one-dimensional
feature to compute the similarity, thus losing much local infor-
mation, especially for sparse point cloud. Meanwhile, the KF
also makes it could not be trained end-to-end. P2B [8] proposes
a feature augmentation to augment the point-wise cosine simi-
larity with target cues and takes VoteNet [24] to regress the box.
Lately, based on P2B [8], PTT [10] utilizes the transformer to
enhance the fused feature of sparse point cloud, BAT [9] exploits
the 3D box information by introducing the box cues into compar-
ison to have an accurate similarity compassion for sparse point
cloud. However, their random downsampling for the input point
cloud may lose the geometric information and makes it hard
to output high-quality proposals in sparse scenarios. V2B [11]
introduces the shape information into features and converts
the augmented feature to a dense feature map by voxelization
and max-pooling to have dense predictions. Nevertheless, they
just convert the feature but ignore the input, thus they also
suffer from information loss due to the random downsampling.
Additionally, LTTR [12] adopts a voxel-based pipeline to avoid
sampling and uses a region-level transformer to enhance the
points features. Nonetheless, the region-level enhancement is
also too coarse to alleviate the sparsity of the point cloud. Similar
as PTT [10], PTTR [25] also utilizes self-attention to enhance
the point features, they further uses cross-attention to compute
the similarity between template and search points. Recently,
M2-Tracker [26] introduces a motion-based paradigm to track
the 3D object, they predicts the relative target motion rather
than computing the similarity and achieve the state-of-the-art
performance.

C. Visual Transformer

Transformer [27] is first proposed in natural language process-
ing. With the help of the attention mechanism, the transformer
shows a strong ability in modeling the global dependencies
of input. Therefore, transformer has also become popular in
many tasks of computer vision. ViT [28] applies a pure trans-
former architecture in image classification. They split the image
into many patches and input them into an encoder to classify.
Swin [29] proposes a shifted window-based attention and a pure
hierarchical backbone. PVT [30] designs a progressive shrinking
pyramid and spatial-reduction attention to build a pure trans-
former backbone. They further update PVT to PVTv2 [31] by
overlapping patch embedding and convolutional feed-forward
networks. Additionally, LocalViT [32] introduces convolution
into the transformer architecture to improve the local relation
modeling. ConvSteam [33] finds that convolutional stem could
help optimization stability and improve performance for vision
transformer. In the dense prediction, DETR [34] first applies
the transformer to object detection and deals with the detection
problem as a set of predictions to match object queries based
on the attention module. Deformable-DETR [35] further pro-
poses multi-scale deformable attention module to speed up the
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Fig. 2. Illustration of the proposed MAE. Given two sets of multi-scale features from template and search respectively, MAE first computes similarity by attention
at each feature scale, and then fuses the multi-scale similarity feature to exploit the information of point cloud.

convergence of DETR and achieve better performance. Mean-
while, transformer has also been introduced into multi-object
tracking [36], [37], [38] and segmentation [39], [40], [41].

III. METHODOLOGY

A. Overall Architecture

In the 3D scene, the object box could be represented as
(x, y, z, w, l, h, θ), where (x, y, z) is the center, (w, l, h) is the
size and θ is the orientation of the box respectively. For the
tracking problem, our goal is to localize the target object with
3D point cloud frame by frame. Meanwhile, following the
assumption [8] that the size of the target object is known through
the first frame, we only need to estimate (x, y, z, θ).

In this letter, we aim at solving the sparsity problem in the
point representation, similarity computation and feature uti-
lization, thus we propose a sparse-to-dense transformer-based
framework consisting of three components: sparse-to-dense fea-
ture encoding, multi-scale attention-based encoder and two-
stage decoder. We will introduce each module in the following
subsections.

B. Sparse-to-Dense Feature Encoding

To have a dense representation from sparse points, follow-
ing [4], we project the points in an area with the size of
W × L×H from both branches into 3D pillars and apply
a simplified PointNet [1] and maxpooling to generate dense
BEV features. Following a shared 2D backbone, we extract
2D dense features from the BEV features. Specially, we use
an attention-based backbone PVTv2 [31] to better capture the
information of the BEV features. By this way, we convert the
3D sparse point clouds into dense 3D pillars and further obtain
dense and compact 2D features.

C. Multi-Scale Attention-Based Encoder

After obtaining the two branch featuresCs, Ct, whereCs, Ct

represent the search and template feature respectively, we aim
at fully exploiting the information of them to better capture
the global similarity. Therefore, we propose the Multi-scale
Attention-based Encoder (MAE), as shown in Fig. 2.

Similarity Computation. Different from previous works
using geometric similarity [8], [9], [10], [11] or cross-
correlation [12], we use the multi-head attention mechanism to
fuse features from two branches for its better global dependence
modeling. The attention is proposed in [27], which projects the
input features into Q,K, V embeddings to fuse them together
based on their similarity. Specially, we first project the feature
Cs, Ct to Es, Et by a shared Conv2D layer. Then, we use an
attention-based block to fuse the template feature Et and search
feature Es. Specially, the attention function is formulated as:

Attention(Q,K,V) = Softmax

(
QKT

√
d

)
V (1)

where Q,K, V are the query, key and value embedding respec-
tively and d is the feature dimension of the K. Meanwhile, the
attention-based block [27] consists of a multi-head attention
(MHA) and a feedforward-network (FFN), thus it could be
formulated as:

MHA(Q,K,V) = Concat(H1, . . ., Hh)W
o (2)

FFN(X) = Max(0,W1X + b1)W2 + b2 (3)

where Hj is computed by (1), representing attention function
for j-th head and W o is the head linear projection, h is the
head number. W1,W2 and b1, b2 are weight matrices and basis
respectively. X is the output of the MHA thus the FFN is after
the MHA. Specially, we use a cross-attention block for different
inputs to the attention. We project the search feature Es to
query embedding Q and project the template feature Et to key
embedding K and value embedding V as:

Q = EsW q,K = EtW k, V = EtW v (4)

where W q,W k,W v are the linear projection of query, key and
value respectively. Through the cross-attention block, we obtain
the fused similarity feature P .

Multi-scale Features Fusion. For multi-scale two-branch
features fusion, there are two scale fusion strategies: early fusion
and late fusion. The early fusion first fuses the multi-scale ex-
tracted features for each branch and then computes the similarity
between two branches and fuses them, while the late fusion
first computes two-branch features similarity and fuses them
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together at each scale and then fuses the multi-scale similarity
features. Compared to the early fusion, the late fusion could
exploit multi-scale feature similarity. For example, the top fusion
could explore more semantic similarity while the bottom fusion
could explore more texture similarity. Therefore, we adopt the
late fusion and will compare the two strategies later.

For each scale features Cs
i and Ct

i from the backbone with
downsample rates of 2i, where i ∈ {2, 3, 4, 5}, we first use the
above similarity computation to obtain the fused feature Pi at
each scale. Then, to enhance the bottom features, we use the
top-down path and lateral connections following FPN [42] to
propagate the information from the top feature to the bottom
feature, which could be formulated as:

Pi−1 = Conv3×3{Conv1×1(Pi−1)

+ Upsample(Pi)}, i ∈ {3, 4, 5} (5)

Then, to fuse the multi-scale features, we upsampleP3, P4, P5

to the size of P2 and concatenate them together, and apply a
Conv2D layer with1× 1kernel to fuse the concatenated features
to generate scale-fused feature U . Finally, a self-attention block
is followed to update the fused feature U . The process could be
formulated as:

P̂i = Upsample(Pi), i ∈ {3, 4, 5} (6)

U = Conv1×1{Concate(P̂i)}, ∀i (7)

Ū = FFN(MHA(U,U,U)) (8)

Therefore, given two sets of multi-scale features representing
template and search features respectively, the proposed MAE
could output a fused feature. Benefiting from the MHA, the
fused feature has a global similarity measurement in different
feature spaces. Meanwhile, the multi-scale fusion also makes
the fused feature have a cross-scale perception, exploiting more
information of sparse point cloud.

D. Two-Stage Decoder

Inspired by DETR [34] and Deformable-DETR [35], we also
adopt a two-stage decoder to predict the box with the fused
multi-scale features Ū . First, we use the fused feature to gen-
erates box pairs {bp, cp} by two linear layers in regression and
classification branches, thus bp and cp is the predicted boxes
and scores in the first stage respectively. Second, we select top
k output pairs based on their scores and project the selected
box value (x, y, z) to an embedding feature and concatenate
them with their corresponding feature in the feature Ū . The
concatenated features are further projected by a linear layer to
generate a set of target queries T , where each query represents
the feature embedding of one potential box. The process can be
represented as:

cp = Linear1(Ū) (9)

bp = Linear2(Ū) (10)

b̂ = {bi‖ci ∈ TopK(cp)} (11)

Û = {Ūi‖ci ∈ TopK(cp)} (12)

Fig. 3. (a) The previous label assign; (b) Our augmented label assign. Our
assign strategy could have more positive samples.

T = Linear3(Concate(Û ,Proj(b̂))) (13)

where Proj means the concatenation of cosine and sine repre-
sentation of the proposals. Meanwhile, the target queries could
be created and initialized randomly for a one-stage prediction.
Third, the generated target queries T are fed into a cross-
attention block together with Û as:

Q = TW q,K = ÛW k, V = ÛW v, (14)

Through the cross-attention block, the feature T̂ is generated for
prediction. Following two parallel linear layers to predict the box
and score respectively, the decoder outputs a set of {b, c}ki=1,
where b ∈ {x, y, z, sin θ, cos θ}, and we select the box with the
highest score to track.

Different from Deformable-DETR which uses deformable
attention and multi-scale features to predict, we only use single
scale feature Ū to predict since it already has included multi-
scale information in our encoder. Meanwhile, considering the
sparsity of 3D points, it would be better to keep more reference
points in attention, thus we use the vanilla attention rather than
deformable attention.

E. Training

Through the proposed SMAT, we get a set of predictions
y = {b, c}ki=1. Different from detection which has many labels
in one batch data and considers one object as one label of data,
there is only one label for every batch data in single object
tracking. Therefore, suffering from the insufficient ground-truth
label data, the convergence could be slow in training and the
performance may be affected.

To solve this problem, we augment the label data based on the
foreground pixels. Specially, we downsample the input point
cloud into the same scale with C2 and count the number of
foreground pixels Nfg in the downsampled BEV point cloud to

generate the ground truth set ỹ = {b̃, 1}Nfg

i=1 . The augmentation
can be interpreted as every foreground pixel is treated as the
object. Fig. 3 shows the difference between previous label assign
and our assign. Additionally, we follow the set prediction loss
of [34], [35] to train the model. The matching cost is defined as
follows:

� = λcls�cls + λL1�L1 (15)

where �cls is cross-entropy loss between the predicted and
ground-truth classes, �L1 is L1 loss between the states of
predicted and ground-truth boxes. λcls and λL1 are weights for
the two losses respectively.
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TABLE I
PERFORMANCE COMPARISON ON THE NUSCENES DATASET. THE BEST TWO RESULTS ARE HIGHLIGHTED IN RED, BLUE

TABLE II
PERFORMANCE COMPARISON ON THE KITTI DATASET. THE BEST TWO RESULTS ARE HIGHLIGHTED IN RED, BLUE

IV. EXPERIMENTS

In this section, we evaluate the proposed SMAT on
NuScenes [14] and KITTI [13] datasets. We first introduce the
experimental setting and then compare our method with previous
state-of-the-art methods on the two datasets. Finally, we conduct
extensive ablation studies to investigate each component of
SMAT to validate our improvement.

A. Experimental Setting

NuScenes Dataset. The NuScenes dataset has a total of 1,000
scenes, contains about 300,000 points every frame and has
360-degree view annotations. Meanwhile, it has been officially
divided into training, validation and testing scenes. However,
since it does not directly support single object tracking task,
we follow the dataset setting of BAT [9] to train and test our
method, where we use the training set for training and the
validation set for testing. We refer to the published results in [9]
for comparison.

KITTI Dataset. We use the training sequences of KITTI
tracking dataset which contains 21 sequences. We follow the
same setting as [8] to divide the sequences into training, val-
idation, and testing splits, where 0–16 for training, 17–18 for
validation and 19-20 for testing.

Implementation Details. We use PVTv2-b2 [31] as our
backbone and follow their original settings. Specially, the head
number is set to [1, 2, 5, 8], the depth is set to [3, 4, 6, 3], the
expansion ratio of the feed-forward layer is set to [8, 8, 4, 8]
and the channel number is set to [64, 128, 320, 512]. In the
Cross-FPN, we set the output channel and feed-forward channel
both to 256 and set the cross-attention heads and attention layers
to 8. In the decoder, we set the head number and layer number
to 8 and the feed-forward channel to 2048. We set [0.1, 0.1, 4]m
as pillar size and [−3.2,−3.2,−3, 3.2, 3.2, 1]m as search area
for Car.

Training Details. For KITTI dataset, we train the SMAT with
72 epochs with Adamw [44] optimizer with the initial learning
rate of 0.0001, weight decay of 0.05 and batch size of 16 on
NVIDIA 3090 GPU. The learning rate decayed by 10× at epochs
63 and 69. For NuScenes dataset, the epochs are 36 with the
learning rate decayed by 10× at epochs 27 and 33 and batch
size of 32. The other settings are the same as those for KITTI.

Evaluation metric. We use the One Pass Evaluation
(OPE) [45] to measure Success and Precision. The Success mea-
sures the 3D IoU between the predicted box and the ground-truth
box, the Precision measures the AUC of distance between the
center of two boxes from 0 to 2 m.

B. Comparison With State-of-The-Arts

Results on NuScenes. As shown in Table I, our SMAT
achieves the second performance in NuScenes dataset. Specially,
our SMAT lags behind M2-Tracker by 9.03% in Success and
11.81% in Precision respectively, and outperforms the third
BAT [9] by 2.10% in Success and 5.21% in Precision. Compared
to our SMAT and other methods, M2-Tracker takes a different
motion-based paradigm to track the target, which shows better
results than similarity-based paradigm. Meanwhile, our SMAT
achieves the best results among the similarity-based methods,
showing that our MAE has a better similarity fusion. Moreover,
for the truck class, we have a better prediction on center than
BAT [9] but worse prediction on orientation, thus we have
achieve better in precision but worse in success. Additionally, we
notice that our trailer’s performance is much lower than other
methods. We believe that because of the long and thin shape
of the trailer, our method needs a larger search area to input
compared to the other methods, thus includes more noise.

Results on KITTI. As shown in Table II, SMAT also performs
the second on the mean of four categories. Meanwhile, our
method achieves the best performance of 71.9% and 52.1%
in Car and Pedestrian categories. Moreover, SMAT surpasses
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Fig. 4. The influence of the number of points on the first frame’s car.

TABLE III
EFFECTS OF MULTI-SCALE FEATURE FUSION IN THE ENCODER

V2B [11], which also have a dense prediction, in the Car,
Pedestrian and Cyclist categories. The comparison verifies the
validity of our sparse-to-dense transformation, showing a dense
representation could retain more information from 3D point
clouds for single object tracking. Additionally, compared to
LTTR [12] which also adopts a voxel pipeline and transformer,
our method exceeds by a large margin (11.7% in Mean), showing
the efficiency of the proposed encoder MAE. Meanwhile, our
SMAT achieves 17.6 FPS in the inference phase.

Robustness to Sparsity. To further explore the effectiveness
of our method, especially for the sparse point cloud, we classify
the car tracking sequences in KITTI according to the number of
point clouds in the first frame and then evaluate our method on
these sequences of different intervals. As shown in Fig. 4, SMAT
shows better robustness to sparsity, especially for the targets
holding less than 30 points. The figure verifies our improvement
in the three aspects. Moreover, only three tracking sequences are
in the interval of (40,50], thus we believe that the performance
drop in this interval is mainly because of the insufficient samples.
Additionally, we also visualize the tracking results in Fig. 5.

C. Ablation Study

In this section, we conduct comprehensive experiments to
validate the design of SMAT. All experiments are conducted on
the Car category of the KITTI dataset.

Multi-scale Fusion in MAE. We first analyze the influence
of multi-scale feature fusion in our framework. Here we first
introduce a baseline network that directly computes single-scale
similarity. Meanwhile, the baseline network directly regresses
one target box without set-prediction, and we term this regres-
sion manner as “Direct”. Notice, for the experiment in Table III,
all compared networks use the “Direct” regression. We believe
this experimental setting can more clearly show the effectiveness
of our method.

TABLE IV
COMPARISON OF DIFFERENT COMPUTATIONS IN THE ENCODER

We compared C2, C5, and multi-scale feature fusion with
early and late fusion strategies, where C2 and C5 are bottom
and top features which have downsample rate 22 and 25 re-
spectively. As shown in Table III, compared to using C2, using
C5 performs better by 2.5% and 5.0% gains in Success and
Precision respectively. Meanwhile, the early multi-scale fusion
further improves the performance, surpassing the network with
fusing C5 by +2.1% in Success and +1.4% in Precision. The
results show that compared to use single-scale features, fusing
multi-scale features could bring better tracking performance
in our framework. Moreover, the late fusion achieves 65.2%
and 76.2% in Success and Precision respectively, higher than
early fusion by 1.4% and 0.5%. Compared to early fusion,
the multi-scale similarity in late fusion may have a stronger
correlation because they only need to focus on the information
at their own scale and then fuse the information. In contrast,
the early fusion has fused the multi-scale features before the
similarity computation, thus the similarity feature only has one
scale and may lose some correlation information.

Similarity Computation in MAE. We also compare different
similarity computation methods in MAE with two prediction
manners. We compare the commonly used cosine similarity,
Euclidean distance, cross-correlation, and our attention-based
computation. Specially, we replace the attention block in MAE
with the compared three similarity methods. Meanwhile, the
three similarity methods usually need a feature augmentation
module in previous works [8], [9], [12], thus we further multiply
the three similarity maps with the search feature to serve as
a simple augmentation. As shown in Table IV, our attention-
based method achieves the best performance in both prediction
manners, surpassing the second by 0.6% and 5.4% in Success
of the two prediction manners respectively. The results verify
our view that a global similarity computation could have better
correlation information for sparse point cloud. Specially, the
geometric similarity only considers one space, such as the
feature angle in cosine similarity or the feature magnitude in
Euclidean distance. Therefore, the similarity is not sufficient
and could be considered as a local measurement in feature space.
Meanwhile, we improve the performance with 1.1% and 5.5%
in the two prediction manners by replacing the cross-correlation
with the attention-based computation. We believe that the
cross-correlation is a spatial local linear matching operation,
leading to information loss, especially for the sparse point cloud.
Differently, the attention-based computation explores the global
similarity spatially in different feature spaces. Therefore, it fully
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Fig. 5. Advantageous cases of our SMAT compared with P2B, SC3D on the Car category of KITTI Dataset. The top two rows are sparse while the bottom one
is denser.

TABLE V
EFFECTS OF DIFFERENT COMPONENTS IN THE DECODER

exploits the correlation information to have a better similarity
measurement and bring better tracking performance.

Decoder. Additionally, we compare the direct regression with
set-prediction decoder, analyze the effect of label augmentation
and two-stage prediction, and further compare the two-stage
decoder with the decoder of Deformable-DETR [35]. As shown
in Table V, the performance drops significantly (↓12.0% in
Success and ↓10.7% in Precision) if we directly adopt one-stage
set prediction. We believe that because the pure one-stage set
prediction only outputs k pair boxes and is trained with only
one ground-truth label, thus it is a sparse prediction which is
hard to generate high-quality proposals for sparse point cloud.
Meanwhile, the two-stage prediction improves the performance
significantly to 67.0% and 79.1% in Success and Precision re-
spectively. Additionally, when only using one-stage prediction,
the proposed label augmentation also improves the performance
to 68.8% and 81.4%, showing its simplicity and efficiency. Fi-
nally, by adopting the two-stage set-prediction decoder and label
augmentation training together, the proposed network achieves
the best performance. Furthermore, the performance of direct
regression could be improved to 66.4% and 78.4% if we apply
two-stage refinement, which is lower than our final result. We
believe that direct regression lacks discrimination and forces all
features to regress the target value no matter they are from fore-
ground or background, thus limit the performance. Additionally,
as shown in Table VI, compared to the decoder in Deformable-
DETR [35], our decoder achieves better performance (↑1.0% in

TABLE VI
COMPARISON WITH THE DECODER OF DEFORMABLE-DETR

TABLE VII
DIFFERENT TEMPLATE GENERATIONS. “F,” “P” AND “AP” DENOTES THE FIRST

GROUND-TRUTH, THE PREVIOUS RESULTS AND ALL PREVIOUS RESULTS

RESPECTIVELY. THE DEFAULT SETTING IS “F&P”

both Success and Precision). The results show that it is better
to keep more reference points rather than reduce them, which is
important for 3D object tracking with sparse point cloud.

Template Generation Strategy. We further compare our
method with previous works under different template genera-
tion strategies on Car category of KITTI dataset. As shown in
Table VII, our method achieves the best performance in three
generation strategies including the first frame ground-truth. The
results show that our method could achieve better results when
given high confidence prior. Meanwhile, compared to most
previous works, such as PTT and BAT, our SMAT has a smaller
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gap 5.2% between different strategies, showing more robustness
to the source of the template point cloud.

V. CONCLUSION

In this letter, we analyze the limitation of 3D object track-
ing with point cloud and present SMAT, a sparse-to-dense
transformer-based framework. We also propose a multi-scale
attention-based encoder MAE to fully exploit the information
from the sparse point cloud. By solving the sparsity problem
in the point representation, similarity computation and feature
utilization, our method could achieve better performance. The
comprehensive experiments demonstrate the effectiveness of our
design of the proposed framework and encoder. For future work,
we plan to explore more attention-based networks on 3D single
object tracking.
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