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in Point Clouds
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Abstract— 3D single object tracking is a key issue for 
robotics. In this paper, we propose a transformer module 
called Point-Track-Transformer (PTT) for point cloud-based 
3D single object tracking. PTT module contains three blocks 
for feature embedding, position encoding, and self-attention 
feature computation. Feature embedding aims to place fea
tures closer in the embedding space if they have similar 
semantic information. Position encoding is used to encode 
coordinates of point clouds into high dimension distinguishable 
features. Self-attention generates refined attention features by 
computing attention weights. Besides, we embed the PTT 
module into the open-source state-of-the-art method P2B to 
construct PTT-Net. Experiments on the KITTI dataset reveal 
that our PTT-Net surpasses the state-of-the-art by a noticeable 
margin (~ 10%). Additionally, PTT-Net could achieve real
time performance (~40FPS) on NVIDIA 1080Ti GPU. Our 
code is open-sourced for the robotics community at h t t p s  : 
/ / g i t h u b . com /sh an jiayao /P T T .

I. INTRODUCTION
3D single object tracking (SOT) has a wide range of 

applications in robotics and autonomous driving [1], [2], 
However, most existing 3D SOT methods are equipped with 
RGB-D cameras [3], [4], which inherit the characteristics 
of 2D images and depend heavily on RGB-D information, 
thus trackers may fail in visually degraded or illumination 
changing environments.

In addition to RGB-D sensors, 3D LIDAR sensors are also 
widely used in object tracking tasks [5], [6] because they 
are less sensitive to illumination changes and could directly 
capture geometric information more accurately. However, 
using only point clouds for 3D SOT has its challenges. 
First, point cloud is sparse and disordered [7], which requires 
the network to be permutation-invariant. Second, 3D object 
tracking needs to estimate higher space dimension (e.g. 
x, y, z, w, h, l, ry ) than 2D visual tracking, which takes more 
computational complexity. Third, compared with rigid object 
tracking (e.g. car), it’s more challenging to track non-rigid 
objects (e.g. pedestrian) since it is too hard to extract stable 
features.

Currently, most point cloud based 3D SOT methods follow 
2D visual object tracking (VOT) approaches (e.g. Siamese 
networks [8], [9]) to track 3D target. The Siamese network 
formulates VOT task as learning a similarity function be
tween the template branch and the search branch. SC3D
[10] is the pioneer point cloud based 3D Siamese Tracker 
based on shape completion network. However, it could not
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Fig. 1. Exemplified illustration to show how PTT module works.
Compared with the existing 3D single object tracking method, our PTT 
module works after calculating the similarity features, and weighs the 
features based on their importance to improve tracking performance.

be trained end-to-end and run in real-time. Besides, Qi et al.
[11] also proposed a point-to-box (P2B) network to estimate 
target bounding box from the raw point cloud. However, this 
approach does not cope well with sparse scenarios. Recently, 
Fang et al. [12] jointed Siamese network and point cloud 
based Region Proposal Network (RPN) [13] to tackle 3D 
SOT task. Nonetheless, the performance of their method is 
unsatisfying. It is worth noting that points located in different 
geometric positions often have different importance in repre
senting targets. However, these aforementioned methods do 
not weigh point cloud features based on this characteristic. 
Besides, the point cloud features extracted from the template 
and the search area contain less potential object information 
due to the sparsity of point clouds. Therefore, how to pay 
attention to the important clues is the key to improving the 
performance of the 3D object tracker.

Recently, transformer has revolutionized natural language 
processing and image analysis [14]—[16]. Self-attention op
erator, which is the core of transformer networks, is intrin
sically a set operator: positional information is provided as 
attributes of elements that are processed as a set [14], [17], 
Therefore, transformer is suitable for point cloud due to its 
positional attributes.

In this paper, we explore the application of the trans
former network for 3D SOT task, and propose a transformer 
module named PTT (Point-Track-Transformer). To pay more 
attention to the important feature of the object, we use the 
transformer’s powerful self-attention and position encoding 
mechanism to weigh the point cloud features. To evaluate the 
effect of our PTT module, we embed our PTT module into 
the open-source state-of-the-art method P2B [11] to build 
a new network called PTT-Net. Finally, the experimental 
results of our PTT-Net on KITTI [18] dataset demonstrate
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the superiority of our method (~  10%s improvement on 
both Success and Precision). Besides, PTT-Net could run at 
40FPS.

Overall, there are three main contributions as follows:
• PTT module: a Point-Track-Transformer (PTT) module 

for 3D single object tracking using only point clouds, weigh
ing point cloud features to focus on deeper-level object clues 
during tracking.

• PTT-Net: a 3D single object tracking network named 
PTT-Net embedded with PTT modules which can be end-to- 
end trained. To the best of our knowledge, this is the first 
work to apply transformer to 3D object tracking task based 
on point cloud.

• Open-source: Experiments on KITTI tracking dataset 
[18] show our method outperforms the state-of-the-art meth
ods with remarkable margins. Besides, we open source our 
method to the research community.

II. RELATED WORK
This section will briefly discuss the related work in 3D 

single object tracking, transformer and self-attention mech
anism.

A. 3D SOT Using Point Cloud
Giancola et al. [10] proposed the first pioneer point cloud 

based 3D single object tracker which utilized the Kalman 
Filter to generate massive target proposals. They introduced 
the shape completion module to enrich the feature learning 
on points. However, their method has a poor generalization 
ability and could not run in real-time. Zarzar et al. [19] 
leveraged 2D Siamese network which converted raw point 
clouds into Bird-Eye-View (BEV) representation to generate 
3D proposals. This method may lose fine-grain geometry 
details which are important for tracking tiny objects. Cui et 
al. [20] also adopted a 3D Siamese tracker only using point 
cloud. However, they could not estimate the orientation and 
size information of the target. Fang et al. [12] jointed 3D 
Siamese network and 3D RPN network to track targets, but 
their performance is limited by the one-stage RPN network. 
Besides, Zou et al. [21] integrated 2D image and 3D point 
cloud information for 3D SOT. However, this method relies 
more on 2D trackers and the performance is not satisfactory 
when using previous results to initialize tracker. Qi et al. 
[11] proposed P2B which used deep hough voting to obtain 
the potential centers (votes) and estimated target center 
based on those votes. However, it ignores the fact that 
points in different positions have different contributions to 
tracking. Furthermore, its random sampling mechanism loses 
the location distribution information of the raw point cloud. 
Based on these shortcomings, we propose a PTT module to 
weigh different point features and use farthest point sampling 
instead of random sampling to obtain more raw point cloud 
information.

B. Transformer and Self-attention
Recently, there have been many wonderful works based 

on Transformer [14], [15], Hu et al. [15] and Ramachandran

et al. [16] applied scalar dot product self-attention in local 
pixel neighbors. Zhao et al. [17] utilized vector self-attention 
operations to image tasks. Inspired by these works, Zhao et 
al. [22] used a Point Transformer layer by applying vector 
self-attention operations, which had a great performance 
improvement in point cloud classification and segmentation 
tasks. Nico et al. [23] proposed SortNet as a part of Point 
Transformer, and achieved competitive performance on point 
cloud classification and partial segmentation tasks. Mean
while, Guo et al. [24] also introduced Point Cloud Trans
former (PCT), which performed well on shape classification, 
part segmentation, and normal estimation tasks. Obviously, 
transformer has unique advantages for point cloud feature 
learning. We hence aim to extend the transformer paradigm 
to our 3D SOT task with more attention to features.

III. METHODOLOGY

Here, we focus on the application of transformer network 
in 3D SOT. Given an input of M points with XYZ coordi
nates, a backbone network modified on the basis of Point- 
Net++ [25] is used to extract the point cloud and learn deep 
features. It outputs a subset of the input containing N interest 
points (seeds) S  =  {si}^=1. s.; =  (q , / ; )  is composed by a 
vector Ci of 3D coordinate and a D-dimensional descriptor J) 
of the local object geometry. Our goal of using transformer 
is to perform an attention weighting operation on the feature 
space of /i, and output refined features f *  with the same 
dimension.

A. Transformer

The architecture of transformer can be divided into three 
parts: input feature embedding, position encoding, and self
attention. Self-attention is the core module, which mainly 
focuses on the differences of input features and generates 
refined attention features based on global or local context. 
Given the input feature G = after feature embed
ding, the general formula of self-attention is:

Q ,K ,V  = a(G), /3(G), 7 (G)
A  = p(a(Q, K)  + P ) o ( V )

where a, f3 and 7 are point-wise feature transformations (e.g. 
linear layers or MLPs). Q, K,  and V  are the query, key 
and value matrices, respectively, a is the relation function 
between Q and K . P  is the position encoding feature, p is 
a normalization function (e.g. Softmax). © means Hadamard 
product. A  is the attention feature produced by self-attention 
layer.

B. PTT Module

We modify the transformer module proposed in Point 
Transformer [22] to weigh the point cloud features. In [22], 
the point transformer layer is proposed to process the raw 
point cloud for classification and segmentation tasks. Here, 
we set an importance-based transformer module to focus on 
the differences among the input point cloud features for 3D 
SOT task.
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Fig. 2. PTT module architecture. It consists of three blocks: feature embedding, position encoding, and self-attention. The whole inputs are the 
coordinates and their corresponding features. Feature embedding module maps input features into embedding space. In position encoding module, the 
k-nearest neighbor algorithm is used to obtain local position information, then the encoded position features will be learned by a Multi Layer Perceptron 
(MLP). The self-attention module learns refined attention features for input features based on local context. The output features of PTT module are the 
sum of input and residual features.

Therefore, we explore how to embed transformer modules 
into 3D SOT task and propose our Point-Track-Transformer 
(PTT) module. PTT module processes features by utiliz
ing shape and geometry information. Given a point set 
S = { si}iLi’ si = (co /i) , °i S r3  and fi e  RD. Ci 
and f t represent 3D coordinates and descriptor of point 
Si. Feature embedding module maps input features into 
embedding space KM: f ,  —> m, cp e KM. Position encoding 
module extracts higher-level M-dimensional features jh from 
input coordinates c,:: ct —? p{, p t e RKxM. Finally, the self
attention module calculates attention weights and attention 
features /* ,/*  6 R D by taking embedding features and 
position features as inputs. To avoid the vanishing gradient 
problem in training stage, we also adopt the residual archi
tecture in [22], and take the sum of the attention features 
and input features as output features.

1) Feature Embedding: The original feature embedding 
module in Natural Language Processing (NLP) is to map 
each word in the input sequence to a high-dimensional vector. 
In this work, we use the linear layer to complete the feature 
embedding operation, and map the input point cloud feature 
dimension from D  To M: RD —s- KM, which can place the 
feature closer in the embedding space if the semantics are 
more similar and make the network have a stronger fitting 
ability.

2) Position Encoding: Position encoding module plays a 
crucial role in transformer, which allows operators to adapt 
to the local structure of the input data [14], And 3D point 
coordinates themselves are the natural input for position

encoding. Therefore, we utilize the coordinates directly as 
the input of the position encoding module. Besides, we use 
the relative coordinates to make the network better capture 
the spatial correlation between points and local geometric 
shape information. Since the feature /,; is extracted by [25] 
which can provide the local context information, we obtain 
the position encoding features P  = } f  t with function
r/. For input point set S including N points, the position 
encoding feature for each point is:

Pi = v{ci ~ Cj) (2)

where c, is the coordinate of the i-th point in S. Cj is the j-th 
coordinate in local neighborhood region of ct by using K- 
nearest-neighbor (KNN). And rj is an MLP with two linear 
layers and one ReLU layer.

3) Self-Attention: As Fig. 2 shows, self-attention module 
computes three vectors for each point: Q, K , V  through a, If 
7, where a, f3, 7 are all linear layers. It is worth noting that K 
and V are aggregated from the features of the k neighborhood 
points, which aim to encode more local context information. 
Here, Q e  R M, K  e  R Kx M, and V  e  R Kx M.

The relation function a can be classified into two types: 
scalar [14] and vector [17], And it has been proved in [22] 
that vector attention is more suitable for point cloud than 
scalar attention since it supports adaptive modulation of 
individual feature channels, not just whole feature vectors. 
Thus we set a( Q, K)  = Q -  K  to obtain point-wise 
attention weights. And an MLP layer 7 is used to introduce 
additional trainable transformations and match the output
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Fig. 3. The pipeline of PTT-Net. In order to verify the effect of our PTT module, we embedded two PTT modules into seeds voting stage and proposals 
generation stage of [11]. The first transformer block takes the augmented feature as input, and outputs the refine features for voting. The second transformer 
block refines the cluster features to help PTT-Net obtain better proposals.

dimension. Then, we add the position encoding features P  
to both the attention vector a  and the transformed features 
K.  Finally, the residual features recorded as A  are defined as 
the weighted sum of the attention weights with all V  vectors. 
The formula is as follows:

A  = p { l ( Q - K  + P ) ) ® ( V  + P)  (3)

where p is a normalization function (Softmax) and 7  is a 
non-linear mapping function (MLP) that includes two linear 
layers and one ReLU layer. A  is attention features.

C. PTT-Net

The ability of the transformer to learn self-attention 
weights inspires us to try it on 3D SOT task. We formulate 
the problem of focusing on the differences in features as 
self-attention weighting. In order to verify the effect of our 
method, we embed our PTT module into P2B [11], More 
specifically, the PTT modules are inserted in seeds voting 
stage and proposals generation stage of P2B.

In seeds voting stage, P2B generates votes based on the 
augmented features, which are from backbone in Fig. 3. We 
notice that [11] ignores the differences among different point 
cloud features in the search area, and gives no preference 
to the points in different locations when generating votes. 
However, it is important to focus on the points which contain 
more geometric information and suppress the background 
noise. Therefore, we apply PTT module to weigh the aug
mented features and obtain the weighted features focused on 
foreground points (in Fig. 4(a)(b)).

In proposals generation stage, P2B generates proposals 
based on local context features. However, their method 
ignores the global semantic features of targets, so that they 
could not distinguish similar objects (e.g. two pedestrians, 
in Fig. 4(c)(d)). Therefore, we use the PTT module to 
further weigh the target-wise context features obtained by the 
aggregation network in P2B for tracking deeper-level target 
clues.

As shown in Fig. 3, we embed our PTT module in the 
P2B [11] to build PTT-Net. We add PTT module to the 
seeds voting and proposal generation stages, and weigh 
the augmented features and cluster features respectively.

Experiments show that our PTT-Net outperforms [11] with 
remarkable margins.

1) Loss Function: The PTT module is trained with the 
other subnetworks in [11], So we follow [11] to design 
our loss function. The overall loss consists of two parts as 
follows:

L aii = L cv +  \ \ L cb +  A 2Lrv +  A 2,Lrb (4)

where Ai, A2, A3 represent the weighting coefficient of each 
loss. Classification loss includes voting classification loss 
L cv and proposal box classification loss L cb. The regression 
loss includes the voting loss Lrv and the proposal box 
regression loss Lrh.

IV. EXPERIMENTS
We used KITTI tracking dataset [18] as the benchmark, 

and set up more detailed experiments to show the superiority 
of our PTT-Net by comparing the different performance of 
the dominant methods [10]—[12], [21] on rigid (Car,Van) and 
non-rigid (Pedestrian,Cyclist) objects. The experiments show 
that PTT-Net outperforms the previous SOTA method with 
remarkable margins at 40fps.

A. Experimental protocols
1) Dataset: We used the training set of KITTI which 

includes more than 20,000 manually labeled 3D objects 
using Velodyne HDL-64E 3D lidar (10HZ). For the splits 
of dataset, we follow [10]—[12], [21], which divide 20 se
quences into three parts 00-16, 17-18, 19-20, corresponding 
to training set, validation set, and test set respectively.

2) Evaluation Metric: Following previous work [10]—
[12], [21], we report Success and Precision metrics defined 
by One Pass Evaluation (OPE) [26], which represent overlap 
and error Area Under the Curve (AUC) respectively.

3) Implementation Details: We use the farthest point 
sampling (FPS) instead of random sampling (RS) in origin 
P2B [11], In training stage, we use the Adam optimizer 
and set the initial learning rate to 0.001 and decrease by 
5 times after 12 epochs. The batch size is 48 and training 
epoch is 60. Besides, we extend the offset from (x, y, 6) to 
(x, y, z, 0) when generating more template samples during 
data augmentation in [11], In testing stage, we also add Z
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TABLE I
Performance comparison on the KITTI dataset for the car

CATEGORY.

Module Modality 3D Success 3D Precision FPS
AVOD-Tracking [27] R+L 63.1 69.7 -

F-Siamese [21] R+L 37.1 50.6 -
SC3D [10] L 41.3 57.9 1.8
P2B [11] L 56.2 72.8 45.5

3D-SiamRPN [12] L 58.22 76.2 20.8
PTT-Net(Ours) L 67.81 81.8 40.0

R and L mean RGB ans LiDAR respectively. 1 “Red and blue mean the 
performance score is ranked first and second respectively.

TABLE II
Extensive comparisons with different categories. “Ped" 

denotes ‘■Pedestrian ''.

Category Car Ped Van Cyclist Mean
Frame Number 6424 6088 1248 308 14068

SC3D [10] 41.3 18.2 40.4 41.5 31.2
g P2B [11] 56.2 28.7 40.8 32.1 42.4
8o FSiamese [21] 37.1 16.2 - 47.0 -
oo 3DSiamRPN [12] 58.2 35.2 45.6 36.1 46.6

PTT-Net(Ours) 67.8 44.9 43.6 37.2 55.1
SC3D [10] 57.9 37.8 47.0 70.4 48.5

c_o P2B [11] 72.8 49.6 48.4 44.7 60.0
"o FSiamese [21] 50.6 32.2 - 77.2 -
cu 3DSiamRPN [12] 76.2 56.2 52.8 49.0 64.9

PTT-Net(Ours) 81.8 72.0 52.5 47.3 74.2

axis offset to generate predicted box. Other parameters are 
consistent with settings of [11].

B. Quantitative Experiments
To better evaluate our method, we designed two quantita

tive experiments on KITTI dataset. In the first experiment, 
we quantitatively evaluated our method for 3D car tracking. 
In the second experiment, we further compared PTT-Net with 
the previous methods on Pedestrian, Van. and Cyclist.

1) Comparisons on car category: We compared the per
formance of our PTT-Net with the existing methods on the 
KITTI dataset and reported results for 3D car tracking in 
Tab. I. In order to fit the requirement of real scenarios, 
we generate the search area centered on the previous re
sult. The results show our PTT-Net has achieved SOTA 
performance in all evaluation metrics. Compared with the 
baseline algorithm P2B [11], our performance has been 
greatly improved by ~11%. Additionally, compared with 
[27] and [21] which both use RGB+LIDAR fusion infor
mation, the Success/Precision results of PTT-Net outperform 
them 4.7%/12.1% and 30.7%/31.2% respectively.

2) Comparisons on other categories: We also compared 
with the dominant methods on Pedestrian, Van, and Cyclist 
(Tab. II). The average performance of PTT-Net outperforms 
P2B [11] ~13%. It is worth noting that the Success/Precision 
results of PTT-Net show an improvement (9.7%/15.8%) on 
non-rigid object (Pedestrian) tracking. This also proves that

t a b l e  m
Different ways for template generation. "GT" denotes

"GROUND TRUTH". "FIRST & PREVIOUS" DENOTES "THE FIRST GROUND 

TRUTH AND PREVIOUS RESULT".

The First Previous First & All
Method

GT Result Previous Previous
SC3D [10] 31.6 25.7 34.9 41.3

0)o P2B [11] 46.7 53.1 56.2 51.4
300 3DSiamRPN [12] 57.2 - 58.2 -

PTT-Net(Ours) 62.9 64.9 67.8 59.8

3 SC3D [10] 44.4 35.1 49.8 57.9
_o P2B [11] 59.7 68.9 72.8 66.8
CD 3DSiamRPN [12] 75.0 _ 76.2 _

Cl-
PTT-Net(Ours) 76.5 77.5 81.8 74.5

TABLE IV
Different embedded positions of PTT module.

Ablation 3D Success 3D Precision

baseline [11] 56.2 72.8
Only PTT in Vote 62.1 76.9
Only PTT in Prop 65.7 78.9

PTT in all(PTT-Net) 67.8 81.8

our PTT module can help the network understand and learn 
the important characteristics of the target better.

C. Ablation Study
1) Template Area Generation: We explored four different 

settings of template point cloud generation, including the 
first ground truth, previous result, the fusion of the first 
ground truth and previous result, and all previous results. 
We reported results in Tab. IV-C. Obviously, our method 
achieves SOTA performances in all settings.

2) Embedding location o f PTT module: To verify our 
design in Sec. III-C of positions where PTT modules are 
embedded, we tried different schemes (Tab. IV-C). The 
results show that embedding PTT module in both two 
stages of [11] can obtain the best improvement. Besides, 
as shown in Fig. 4, compared with (a) and (b), PTT-Net 
has better point cloud classification results which focus on 
foreground points. Comparing (c) with (d), PTT-Net could 
still track target pedestrian robustly when more proposal 
centers are generated from another pedestrian. This result 
effectively shows that transformer can learn more target-wise 
information.

D. Qualitative Experiment
Attention can be understood as the place where the net

work focuses on. It is obvious that PTT module guides 
tracker in focusing on foreground points even if they are 
few.

1) Advantageous cases: We first exemplified the attention 
score in the voting stage in PTT-Net in Fig. 5. To further 
demonstrate the performance of our method, we selected 
four scenarios according to the type and difficulty of the 
tracking target. It is obvious that PTT module guides tracker
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Fig. 4. Visualization of classification(a-b) and tracking(c-d) results with
or without PTT module. The point will be paid more attention if it has a 
higher score. Compared (a) with (b), PTT module pays more attention to 
the foreground points. Compared (c) with (d), PTT module could still track 
targets robustly in crowded scenes (with multiple pedestrians).

Fig. 5. Exemplified illustration to show the attention scores of rigid 
cases(a-b) and non-rigid cases(c-d). And we also divide the easy and hard 
cases according to the number of foreground points. It is obvious that PTT 
module guides tracker in focusing on foreground points even if they are few 
or extremely similar to others.

in focusing on foreground points even if they are few by 
comparing (a) and (b). Besides, (c) and (d) also show good 
performance in non-rigid object (pedestrian) tracking, even 
if the target and background are extremely similar (d), PTT 
module can distinguish them.

We then visualized our advantageous cases over P2B and 
SC3D in Fig. 7. We can observe that both SC3D and P2B 
tracked eventually failed in the sparse scenarios (less than 
50 points), but our PTT-Net tracks the target tightly.

2) Failure cases: To show the performance of our method 
in more detail, we exemplified the impact of varying density 
of points on the first frame’s car to PTT-Net in Fig. 6. The 
orange points indicate failure cases that the number of points 
from the initial frame are mostly less than 20. And even if 
four tracklets are initialized with 0 points. In these cases, our 
PTT-Net could not learn effective object characteristics, so 
it fails to track. As shown in Fig. 8, our PTT-Net could not 
learn effective object characteristics since no points in the

Success
100

80

60 t •• • • v  •
• •
• • •

0 20 40 60 80 100 120
Number of points on the first frame’s car

Fig. 6. The number of points on the first frame’s car and 3D Success. 
There are 120 points in this scatter figure corresponding to 120 tracklets 
in testing sequences (19-20). Orange points indicate tracking off course or 
even failed.

initial search area.

E. Timing Breakdown
We calculated the average running time of all test frames 

in the Car category to evaluate running speed. PTT-Net 
achieved 40 FPS on a single NVIDIA 1080Ti GPU, including 
8.3 ms for preparing point cloud. 16.2 ms for model forward 
propagation, and 0.5 ms for post-processing. The running 
time of SC3D [10], P2B [11] and 3D-SiamRPN [12] on the 
same platform are 1.8FPS, 45.5FPS and 20.8FPS, respec
tively.

V. C o n c l u s i o n s

In this work, we explored the application of transformer 
network in 3D SOT task and proposed PTT module. The 
PTT module aims at weighing point cloud features to focus 
on the important features of objects. We also embedded the 
PTT modules into the open-source state-of-the-art method 
[11] and construct a novel 3D SOT tracker named PTT-Net. 
Experiments show that PTT-Net outperforms previous state- 
of-the-art methods with remarkable margins. We hope that 
our work will inspire further investigation of the application 
of transformers to 3D object tracking.
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