CUIET AL.: 3D OBJECT TRACKING WITH TRANSFORMER 1

3D Object Tracking with Transformer

Yubo Cui'+2 " Northeastern University
ybcui21@stumail.neu.edu.cn Shenyang, China

Zheng Fang’ 2Science and Technology on
fangzheng@mail.neu.edu.cn Near-Surface Detection Laboratory
Jiayao Shan' Wauxi, China
shanjiayao97@stumail.neu.edu.cn

Zuoxu Gu'

guzuoxu@stumail.neu.edu.cn

Sifan Zhou'

zhousifan@stumail.neu.edu.cn

Abstract

Feature fusion and similarity computation are two core problems in 3D object track-
ing, especially for object tracking using sparse and disordered point clouds. Feature
fusion could make similarity computing more efficient by including target object in-
formation. However, most existing LiDAR-based approaches directly use the extracted
point cloud feature to compute similarity while ignoring the attention changes of object
regions during tracking. In this paper, we propose a feature fusion network based on
transformer architecture. Benefiting from the self-attention mechanism, the transformer
encoder captures the inter- and intra- relations among different regions of the point cloud.
By using cross-attention, the transformer decoder fuses features and includes more target
cues into the current point cloud feature to compute the region attentions, which makes
the similarity computing more efficient. Based on this feature fusion network, we pro-
pose an end-to-end point cloud object tracking framework, a simple yet effective method
for 3D object tracking using point clouds. Comprehensive experimental results on the
KITTI dataset show that our method achieves new state-of-the-art performance. Code is
available at: https://github.com/3bobo/lttr.

1 Introduction

Recently, LIDAR-based 3D object tracking has been received more and more attention. Ben-
efiting from the development of visual tracking [1, 7, 13, 15, 16], most 3D tracking meth-
ods [11, 20, 30] also use the Siamese-like tracking pipeline. The pipeline first inputs template
point clouds of the target object and search point clouds of the current frame to its top and
bottom branches respectively, then fuses the two-branch features based on similarity. Finally,
the fused features are used to localize the position of the object to be tracked. However, com-
pared with visual tracking, LiDAR-based tracking has more challenges due to the sparsity
and disorder of the point clouds. For example, the point clouds will become much sparser
with the increasing distance of the object, which hinders the feature extraction. Meanwhile,
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the disorder of the point clouds also makes it hard to compute the similarity between the two
branches.

Previous works use shape completion [11], image prior [30], or feature augmentation [20]
to deal with the above problems. Although they achieve better tracking performance, they
usually ignore the attention changes in different regions of the object during tracking. How-
ever, the tracking method should pay more attention to regions with salient features when
processing dense point cloud, while it should focus on regions with more points when pro-
cessing sparse point cloud. Therefore, in the tracking process, different regions in the point
cloud should have different attentions depending on the situation, even the same region also
should have different attentions in different periods.

Inspired by [8, 12], in this work, we introduce transformer architecture [24] into LIDAR-
based 3D object tracking. First, the point cloud is divided into several non-overlapping
local regions. Then, based on the self-attention mechanism of the transformer encoder, the
representation of each region is constructed by capturing the structural information of the
local points, and the feature of the point cloud is reconstructed by considering the global
relation among regions. Finally, in the decoding process, through propagating the template
feature to the current search feature, the feature of the target object becomes more prominent
and includes more target cues. Furthermore, following [27], we propose a LiDAR-based
3D Object Tracking with TRansformer framework (LTTR), which is simple but efficient.
Experiments on KITTI [10] dataset show that LTTR has outstanding tracking performance
and achieves new state-of-the-art performance.

In summary, our contributions are as follows:

e We propose a transformer architecture that explores not only the inter- and intra- re-
lations among different regions within the point cloud but also the relations between
different point clouds.

e We propose a new 3D object tracking framework based on the transformer architec-
ture, which is simple but efficient.

o Extensive experimental results on KITTI dataset show that the proposed method achieves
outstanding tracking performances.

2 Related Work

2.1 3D Object Tracking

3D object tracking aims to localize the object in successive frames in 3D space given the
initial position. Previous works usually focus on RGB-D data [2, 14], which heavily depend
on visual features. Recently, with the development of 3D vision methods, there are many
LiDAR-based 3D object tracking works [11, 20, 30]. For example, Giancola et al. [11]
used point clouds to track object in LiDAR space based on computing the cosine similarity
between template and search branch. However, they ignored the characteristics of the point
clouds. Zou et al. [30] leveraged RGB image feature to generate 3D search space, and
used point clouds feature to track. Based on [11], Qi et al. [20] proposed a feature fusion
module to augment search point features and achieved state-of-the-art tracking performance.
In this paper, we explore the inter- and intra- relations among different regions and propagate
features between branches to compute region attentions by leveraging the transformer.
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Figure 1: An overview of our LiDAR-based 3D Object Tracking with Transformer frame-
work (LTTR). ® is the cross-correlation operation, ® represents multiplication operation.

2.2 Vision Transformer

Due to the great success of Transformer [24] in natural language processing, recent works
start to apply it to vision tasks. Dosovitskiy ef al. [8] proposed ViT to apply a pure trans-
former in image classification. They split an image into a series of flattened patches and pro-
cesses the patches by vanilla transformer block to get image cls token. Furthermore, Han et
al. [12] explored the intrinsic structure information inside each patch and achieved higher
accuracy than ViT. Chu er al. [6] explored the position embedding for ViT and proposed a
conditional positional encoding scheme. Liu ef al. [18] proposed a shifted windows-based
attention and a pure hierarchical backbone which could be used in dense vision tasks.

Carion et al. [3] proposed DETR which is the first work to apply the transformer into
dense prediction tasks. They applied the transformer architecture into object detection and
found the best match between the encoded image embeddings and object queries via the
attention module. However, DETR suffers from heavy computation and slow convergence.
Zhu et al. [29] proposed deformable attention to reduce the complexity and speed up con-
vergence, yielding higher performance. There are also other works applying transformers to
other tasks, such as visual tracking [4, 25], multi-object tracking [19, 22].

3 Method

In this section, we present the proposed framework, named LTTR. As shown in Figure 1, the
framework consists of data processing, feature extraction, feature fusion, and prediction. We
will introduce the details of LTTR in the following subsections.

3.1 Opverall Architecture

Data Processing. We adopt the Siamese-like tracking pipeline which inputs template and
search point cloud to top and bottom branches respectively. By reading the label, we obtain
the 3D box of the target object and transform the whole scene point clouds into the local
coordinate system whose origin is set as the center of the box. After that, we randomly shift
the (x,y) of the center of the 3D box to get the training label value in the search branch, then
normalize the points into the x-axis of the box in the template branch. Finally, we apply the
same 3D range to both branches to get the input pair. The point cloud in the 3D range in the
search branch is the search point cloud, and the point cloud in the 3D box in the template
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branch is the template point cloud. For both branches, we divide the points into regular
voxels with a spatial resolution of W x L x H and get input [ € RW>LxH

Feature Extraction. We use the 3D sparse convolution network and 2D convolution
network as the backbone network to extract features for both branches. Through 3D sparse
convolution, the voxels are converted into feature volumes with 8x downsampled sizes.
By converting the 8 x downsampled 3D feature volumes into BEV representation, the final

feature map M € R¥*5%F i generated following the 2D backbone network, where F is the
feature channels. The weights are sharing between two branches.

Feature Fusion. Subsequently, we update and fuse the search feature M; and the tem-
plate feature M; in the feature fusion network. As shown in Figure 1, M; and M, are first
fed into the encoder respectively, and then sent into the decoder together. Following [12],
the transformer encoder receives M € RS *5*F and outputs region feature G € RV*P of
channel D with N regions. The transformer decoder propagates information from template
regions G; to search regions Gy and decodes a fused G; € RV*P through cross-attention.
Moreover, we project the region feature G € RV*P to G € RV*/ as an attention weight by
a fully-connected layer in both branches, and unfold the original feature M to the size of
V‘gjiff x N to multiply with G. The feature is recovered back to the size of % X % x F fi-
nally. The details of transformer architecture will be described in Section 3.2. Following the
depthwise cross-correlation, the similarity feature with size 1 x I X F is computed between
M; and M;. Finally, we multiply the similarity feature with M; to recover feature size for
dense prediction.

Prediction. Following [9, 27], we use a center-based regression to predict several object
properties. The regression consists of four heads, including the center heatmap head, local
offset head, z-axis location head, and orientation head. Since our aim is to track the target
object, we follow the assumption in [20] that the 3D object size is known. The heads produce

a center heatmap H € R¥*5%C, a local offset regression map O € R¥*5*2, 3 z-value map
7 € R$*5*! and an orientation map O ¢ R¥ X 5%2 respectively, where C is the number of
classes (1 in our tracking task) and orientation includes sin(6) and cos(0). We follow [9] to
set heatmap value for every point (x,y) in the downsampling feature map as:

1 ifd=0
H,,. =408, ifd=1 (1)
%, otherwise

where d is the Euclidean distance calculated between the object center and the point location
in the downsample BEV map. A prediction I:Ix,yjc = 1 corresponds to the object center and
I:Ix,w = 0 corresponds to background. We train the heatmap with focal loss [17]:

( xyc)ak’g( mc) ifHyye=1

Lhear = —5 Z Hy,, c) ﬁ (I:Ix ¥y, ) otherwise @
rpe 10g (1 x,y,c) )

For other heads, we use L1 loss:

1 Y.
:NZV

k=1

3 ‘ 3)
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Figure 2: (a) The transformer encoder. (b)An overview of the proposed transformer archi-
tecture.
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where £, € (Lorr, L2, Lori), V is the true value and v%) is the predicted value for these heads.
Therefore, the overall training loss is

L= £heat + 2foﬁ‘ﬁr)ﬁ‘ + }'Z‘CZ + loriAcori €]

where A is the regularization parameter for each head.

3.2 Transformer Architecture

Multi-head Attention. Attention function is the core of the transformer, thus we first briefly
review the principle of attention. Given query matrix Q, key matrix K and value matrix V,
attention function computes the similarity matrix between query and key, then multiplies
value with normalized similarity, defined as:

oK”
Ve

where dj, is the dimension of key. Meanwhile, multiple heads are usually utilized in the
attention function. Multi-head attention (MHA) projects query, key, and value into different
feature spaces h times, where 4 is the number of heads, and computes the attention in parallel
for every of these projected queries, keys, and values. The results from different heads are
concatenated and projected to the final value. Following [24], the define of MHA is:

Attention(Q, K, V) = softmax( % (5)

MHA(Q,K,V) = Concat(head, ...,headh)Wo ©)

where head; = Attention(QWiQ,KWiK ,VWY) and WO € Rhdv>dnoder | 4, is the dimension of
value and d,,,4.; is the dimension of a single head attention.

Transformer Encoder. The transformer encoder takes BEV point cloud feature M €
RS *5*F g its input. Following [12], we first split M into N non-overlapping regions of
resolution (R, R) and reshape them to M’ € RV*(RXRxF) where N = 45 X &%. Meanwhile,
we also transform each region into the target size (R’,R’) with point unfold. After applying
a linear projection, the sequence of regions can be formed as:

Uy =[US,US,- U] € RV RXR'%S) ©)
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; ! R . .
where U} € RRXR>S i =12 ... N, and S is the number of channels. Furthermore, each
region tensor can also be viewed as a sequence of point tensors:

Uj =7y R Y ®)

where N’ = R”>. By utilizing multi-head self-attention, we could explore the intra-relation
among regions:

Ui =Ul_, + MHA(UL_,,UL_,,U_)), ©)
Uj=Ui+FFN(UY). 10)

where j = 1,2,---,J is the index of the j-th layer, J is the total number of layers, and FFN
means the feed-forward network, which is a 2-layer MLP module. The point-level MHA
builds the local relations among points within one region and produces the region tensor.
Additionally, similar to previous vision transformer works [3, 8, 12], we create a set of
learnable parameters called region embedding memories G for the region tensors and take
them into output as the region representations. Specially, the region embedding memories
are added with the region tensors in each layer:

Go = [Gelass; Gb, G3, -+ , G| € RWVHD>D (11)
i1 =G +o(U_y), (12)

where Gla 1s the global point cloud embedding, G;q € RP, @ is the projection function,
which is fully-connected layer in our implementation. We random initialize all of the region
embedding memories. Meanwhile, we utilize the MHA once again for region embeddings.
The mechanism can be summarized as:

G' =G +MHA(G)_,G}_,G]_)), (13)

G'; = G',+FFN(G"). (14)

The region-level MHA explores the inter-relation among regions, building the global in-
formation of the point cloud. Therefore, the region embedding memories learn the region
representation by adding to region tensors and being sent into the MHA during training.
Meanwhile, although Gj,ss does not have a corresponding region tensor to add, it can also
capture the global information by exchanging information with the other region embeddings
through the region-level MHA. Furthermore, we use standard learnable 1D position embed-
dings to add to embeddings as follows:

T=T+E s5)

where T € (G,U), E € (Eregion: Epoint)> Eregion € RWN+D*D gnd Epoint € RN'*S_ Both the
region and point position embeddings are added to the corresponding embeddings before
MHA and are shared across the same data level, thus the local and global spatial information
can be maintained. The whole process is shown in Figure 2(a).

By processing both points and regions, the encoder explores the local information across
points within regions and global relations across regions, producing G € RWN+D*Dfor each
point cloud feature M. We take G = [G},G3, - -- ,GN] € RV*P as the input of the decoder.

Transformer Decoder. The above encoder processes template and search features sepa-
rately, thus the information only flows within the point cloud itself. To build the inter-relation
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Method Reference LiDAR RGB Success Precision FPS
SC3D [11] CVPR2019 vV 41.3 57.9 1.8
F-Siamese [30] IR0OS2020 vV Vv 37.1 50.6 -
P2B [20] CVPR2020 v/ 56.2 72.8 45.5
LTTR(Ours) - v 65.0 77.1 22.6

Table 1: Comprehensive comparison with state-of-the-art trackers on Car category.

between point clouds and exchange information across branches, we further utilize a trans-
former decoder to fuse features. The decoder fuses features by propagating template region
feature G; to search region feature Gs. The decoder first updates the search region feature Gy
by self-attention mechanism, then computes the similarity among regions from search and
template point clouds based on the cross-attention mechanism. Specially, the decoder takes
G; as the query and G; as key and value through the cross-attention, the fused search region
feature Gy is generated following a feed-forward layer. The decoder is shown in Figure 2(b)
and can be summarized as:

Gy = G +MHA(Gy, Gy, Gy), (16)
G, = G, +MHA(G,,G;,Gy), (17)
G, = G, +FFN(G;). (18)

Through the decoder, the search and template region features exchange region information,
which makes the search region feature include much more information of the target object
and computes the region attention. To have clear representations, the layer norm operation
is not represented in the above equations.

4 Experiments

4.1 Datasets and Evaluation

We use KITTI tracking dataset [10] as the benchmark and follow [20] in data split. We also
use One Pass Evaluation (OPE) as evaluation metric, including Success and Precision.

4.2 Implementation Details

In data processing, we set point cloud range as [-3.2m, 3.2m], [-3.2m, 3.2m], [-3m, 1m]
along X, y, z axis, and set voxel size as [0.025m, 0.025m, 0.05m]. The template and search
points are voxelized following [28]. A maximum of five points are randomly sampled from
each voxel. Meanwhile, we use the same backbone as [26, 28]. In regression, each head
consists of four convolution layers to predict and the heatmap head is followed by a sigmoid
function to generate the final score. Following the training setting of the popular codebase
OpenPCDet [23], we train the network end-to-end with 80 epochs and 36 batch. In loss
setting, we set o = 2, B =4 in Equation 2, and set A, = 1.5, A,y = A,ri = 1 in Equation 4.

4.3 State-of-the-art Comparisons

We compare our LTTR with previous state-of-the-art methods on KITTI dataset. As shown
in Table 1, our approach surpasses the previous methods by +8.8% Success and +4.3% Preci-
sion respectively in the Car category. Additionally, LTTR achieves a real-time running speed.
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Method Car Pedestrian Van Cyclist Mean
Frame Number 6424 6088 1248 308 14068
SC3D [11] 41.3 18.2 404 415 31.2

Success F-Siamese [30] 37.1 16.2 - 47.0 -
P2B [20] 56.2 28.7 40.8 32.1 42.4
LTTR(Ours) 65.0 33.2 35.8 66.2 48.7
SC3D [11] 57.9 37.8 47.0 70.4 48.5
.. F-Siamese [30] 50.6 32.2 77.2
Precision

P2B [20] 72.8 49.6 48.4 44.7 60.0
LTTR(Ours) 771 56.8 45.6 89.9 65.8

Table 2: Extensive comparisons with state-of-the-art trackers on multiple categories.

Average Value

[0.20) [20,40] 140,60] [60,80) [80.,100) >100
Number of points on the first frame

Figure 3: The influence of the number of points on the first frame’s car.

We also report multiple categories tracking results on KITTI dataset, including Pedestrian,
Van, and Cyclist. As shown in Table 2, our method outperforms P2B [20] by 5% on average.
In particular, LTTR shows its advantages on objects with a small size, e.g. Pedestrian and
Cyclist, surpassing previous methods by a large margin. Considering the difference among
these categories, our method is a general and efficient method for different categories.

We also report the influence of the number of the first frame’s point in the Car category.
As shown in Figure 3, with more points, LTTR has a higher performance. We believe that
more points in the first frame give the network enough information about the target to track.

4.4 Ablation Study

In this section, we ablate the proposed method i , _
Different Network Version Success Precision

on the Car category of KITTI dataset. We Baseline 572 =09

first ablate the transformer network to ver- Encoder (w/o Decoder) 6063491 71.91.0%1
i K Encoder + Decoder (Max) 64.27 09+ 77.36.49%1
ify the influence of the encoder and decoder. Encoder + Decoder 650151 T71gom

We introduce a baseline version and a Max-
Decoder version. The baseline version does
not have any transformer component, and the
Max-Decoder version inputs G, instead of G = [G(l), G%, s GG’ ] in the template branch to
the decoder. Moreover, we compare the different numbers of heads, layers and region sizes
in the transformer to validate our design choices. Finally, we compare different backbones
and regression heads to explore their influence on the proposed method.

Effect of Encoder. As shown in Table 3, with the transformer encoder, the performance
has +3.4% and +1.0% gains on Success and Precision respectively. The result indicates the

Table 3: Ablative study of our transformer
architecture.
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effectiveness of our encoder to build the local and global relations of point cloud. It is worth
noting that even without any transformer component, our baseline version has a competitive
performance with the state-of-the-art methods.

Effect of Decoder. We further add the transformer decoder. Specially, we evaluate
two decoder versions different in template input. As shown in Table 3, both of them bring
significant performance improvements. However, compared to Max-version, our version has
a balanced result between Success and Precision. We believe that the Max-version loses the
inter-relation among regions of the point cloud due to its single global input.

Structure Modifications. We also dis-

cuss the details of our transformer structure Success  Precision
as shown in Table 4, including the number of 1 61.0 73.7
2 61.6 74.6
heads, number of encoder/decoder layers and Head Number 4 62.1 753
the region size. All experimental networks 8 65.0 77.1
h | d d decod 12 638 78.3
ave a complete encoder and decoder compo- ; &0 71
nent. For the number of heads, we observe that 2 61.9 74.3
. . Layer Number 4 62.7 75.7
heads=8 achieves the best performance, while verse 6 611 738
increase heads to 12 results in a decrease in 8 60.2 73.2
Success but an increase in Precision. The re- ! 60.5 733
o . ” o Region Size 4 63.6 76.7
sults indicate that MHA is efficient in our trans- 16 65.0 771

former architecture, as discussed in Section
3.2, but too many heads may result in degen-
eration in orientation prediction. Meanwhile,
stacking more layers does not bring in performance improvement but has more parameters
and lower speed. We speculate that more layers may divide the template and search features
into different feature subspaces. Different from detection task, the tracking task has two
input branches and tracks the object based on their similarity. Therefore, tracking method
requires the template and search features to be in the same feature spaces to have a better
similarity computation. Additionally, with a small region size, the performance of the net-
work degenerates to the encoder version. We believe that the smaller size generates more
regions and leads to the decoder not being able to exchange global information effectively.
Thus, we use the max non-overlapping size R = 16 for higher performance.

Backbone. We also make modifications to the backbone to explore whether the per-
formance could be further improved by increasing the parameters in the backbone. Our
backbone follows Second [26], a backbone baseline in 3D vision for its simple architecture
and wide use [5, 21, 28]. The baseline includes 3D and 2D backbones to process voxels and
BEV features respectively. The 3D backbone is termed as BaseVoxel and the 2D backbone is
termed as BaseBEV. In this comparison experiment, we use the resnet-manner version of Ba-
seVoxel in OpenPCDet [23] and termed it as ResVoxel, which adds a residual path in every
sparse block of BaseVoxel. Meanwhile, we add one convolution block to BaseBEV and term
it as DeepBEV. Therefore, the ResVoxel has more parameters than BaseVoxel, and DeepBEV
is deeper than BaseBEV. However, as Table 5 shows, with the network going deeper and the
total parameters becoming larger, the performance does not have improved but decreased.
We speculate that more parameters in the backbone may hinder the transformer to capture
useful information, thus our baseline backbone could achieve better performance with fewer
parameters comparing to these modifications.

Regression Head. We compare our center-based regression head with an anchor-based
counterpart. For anchor-based regression, we follow the setting of Second [26]. Specially,
for every location, we set two anchors with 0 degrees and 90 degrees, and the thresholds for

Table 4: Ablative study of our transformer
architecture.
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3D Backbone 2D Backbone 3D Params 2D Params Success Precision

BaseVoxel BaseBEV 1.280K 8.266M 65.0 771
DeepBEV 1.280K 12.988M 62.4 76.4
ResVoxel BaseBEV 2.656K 8.266M 62.6 754
DeepBEV 2.656K 12.988M 60.2 73.8

Table 5: Ablative study of different 3D and 2D backbones.

M EFE R
e e AR
¥

|

Figure 4: Visualization results. There are template point cloud, search point cloud, heatmap
without transformer, point-level attention, region-level attention, heatmap with transformer
and the predicted boxes from left to right.

positive and negative are 0.6 and 0.45 respec- Success Precision
tively. As shown in Table 6, the anchor-based Centerbased 650  77.1
regression improves the Success 0.3 points Anchorbased 653 751
while reduces the Precision 2.0 points. The
result shows that the center-based regression
has better prediction results in location but is
weaker in rotation regression compared to anchor-based regression. We believe this is be-
cause of the pre-defined anchor rotation degree in anchor-based regression. Meanwhile,
the anchor-based regression needs more hyper-parameters in the anchor setting which needs
fine-tuning. Therefore, to have fewer hyper-parameters and more balanced tracking results,
we adopt the center-based regression.

Table 6: Comparison of different regres-
sion heads.

4.5 Qualitative Visualization

To explore the effect of the transformer network, we visualized the predicted heatmap and
the transformer point and region weights, as shown in Figure 4. Compared to the heatmap
without transformer, the heatmap with transformer accurately finds the target position with
the help of point and region attentions, avoiding the false track. The results verify the effec-
tiveness of the proposed transformer network, even for target object with sparse points.

5 Conclusions

In this paper, we present LTTR, a novel tracking framework based on the transformer.
Through the transformer network, LTTR builds local information and global relation within
the point cloud, explores the inter-relation between point clouds, and predicts the 3D bound-
ing box of the target object by a center-based regression. Comprehensive experiments on
KITTI dataset demonstrate that our method achieves new state-of-the-art performance. In
the future, we will investigate how to integrate temporal information into our method.
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