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HyGFNet: Hybrid Geometry-Flow Learning
Network for 3D Single Object Tracking

Yubo Cui, Zheng Fang*, Member, IEEE, Zhiheng Li, Shuo Li, Yu Lin

Abstract—3D single object tracking (SOT) which attempts to
accurately locate the target object in the current frame, has made
significant advancements over past years. However, most previous
works built upon the Siamese architecture usually focus on the
learning and matching of geometry information, while neglect-
ing the motion information of the target. Consequently, those
methods face challenges when distinguishing the target object
from similar distractors. To overcome this limitation, we enhance
the architecture by incorporating flow estimation, presenting a
novel multi-frame hybrid geometry-flow learning network for 3D
SOT. The proposed framework exploits both geometry and flow
information from historical frames and further integrates the
learned information into the current frame to improve the target
object localization. Specifically, we propose a geometry matching
branch and a flow estimation branch. The geometry matching
branch first captures the geometry feature of each frame and
then aligns these features through multi-frame spatial-temporal
matching, leading to a geometry-aware feature for the target
object. Meanwhile, in the flow estimation branch, a multi-frame
flow-aware enhancement module is proposed to explicitly capture
flow information across frames, leading to a flow-aware feature
for the target object. Finally, the geometry-aware and flow-aware
features are fused with the original feature to predict the position
of the target object. Extensive experiments conducted on the
KITTI and nuScenes datasets validate the effectiveness and show
the competitive performance of our method. The code will be
open soon.

Index Terms—3D single object tracking (SOT), Flow estima-
tion, Siamese network.

I. INTRODUCTION

3D single object tracking, as an important task in 3D com-
puter vision, has attracted increasing attention in recent

years. Given the 3D bounding box of the target object in the
initial frame, the task needs to estimate the position and state
of the target in each subsequent frame. Previous works [1]–
[7] have largely inherited the paradigm of visual tracking,
employing the Siamese architecture to track target object. As
shown in Figure. 1 (a), this paradigm first extracts features
for the template point cloud and the current point cloud, then
matches and fuses the two learned features for the prediction.
However, unlike using ordered and dense images as inputs in
visual tracking, 3D SOT needs to handle sparse and unordered
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Fig. 1. Comparison of the current 3D single object tracking frameworks.
(a) Geometry matching paradigm usually adopts similarity-based matching
and fusion. (b) Motion estimation paradigm predicts an object-level box
transformation. (c) Our hybrid paradigm includes both geometry learning and
flow estimation.

point cloud inputs [8]. Therefore, there are some challenges in
directly applying the matching paradigm from visual tracking
to 3D SOT. For example, because the geometric structures of
objects from the same category are usually similar in point
cloud representation, it is difficult to locate the target object
solely relying on the matching paradigm under the scenes with
similar distractors.

To address this challenge, previous methods [5]–[7], [9],
[10] introduced more complex geometry learning and match-
ing modules to learn higher-dimensional information to im-
prove the accuracy of geometric information matching. Spe-
cially, V2B [6] proposes template feature embedding to en-
code the search area by learning the similarity of the global
shape and local geometric structures, and further learns the
shape-aware feature to characterize the geometric structures
of the target better. Moreover, SMAT [9] proposes a multi-
scale attention-based encoder to capture the global similarity.
STNet [10] proposes an iterative coarse-to-fine correlation
to augment the similarity feature with attention. PTTR [7]
proposes an attention-based feature matching to match search
and template features and generates a coarse prediction based
on the matched feature. Although these methods alleviated
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the problem of losing the target in some complex tracking
scenarios, they are still limited by the geometric matching
paradigm.

Differently, M2-Tracker [11] proposes a two-stage mo-
tion estimation paradigm to the 3D SOT task. As shown
in Figure. 1 (b), in the first stage, it segments the fore-
ground points in the current frame by using the prior from
the previous frame, and then estimate a coarse rigid body
transformation to a coarse prediction. In the second stage, it
merges the foreground points from current and previous frames
to refine the coarse prediction to get the final prediction.
Compared to the matching paradigm [1]–[7], this motion
paradigm inherently avoids the challenge of distinguishing the
target from similar distractors, thus achieving superior tracking
performance. However, the object-level motion estimation is
relatively coarse for small-scale motions. Additionally, the
motion estimation paradigm is prone to inaccuracies over
larger tracking intervals.

As mentioned above, on one hand, the matching paradigm
could locate the target object based on similarity when the ex-
tracted features contain enough information, but it is sensitive
to interference from similar objects and is unstable in sparse
scenes. On the other hand, the motion paradigm can locate
the target based on motion information, but imprecise motion
estimation in scenarios with small-scale motion or substantial
time intervals may also lead to target loss. Consequently, can
we combine the advantages of matching and motion paradigms
for 3D SOT?

In this paper, to solve this problem, we propose a multi-
frame hybrid paradigm to combine the advantages of both ge-
ometry and motion paradigms. We propose Hybrid Geometry-
Flow Learning Network (HyGFNet) to learn geometry infor-
mation and estimate point-level flow for matching and motion
estimation respectively, as illustrated in Figure. 1(c). The
proposed HyGFNet takes multi-frame point clouds as input
and consists of two branches, a geometry matching branch and
a flow estimation branch. In the geometry matching branch,
we first learn the geometry structure information of each his-
torical frame by learning a Bird’s-Eye View (BEV) bounding
box mask, then we use the learned geometry information
to enhance current representation by a proposed attention-
based spatial-temporal decoder, resulting in a geometry-aware
current feature. In the flow estimation branch, different from
M2-Tracker which only predicts object-level motion, we aim
to predict more accurate point-level flow between the current
frame and each historical frame. Consequently, our point-
level flow can enhance point representation and emphasize the
motion of target more effectively than M2-Tracker. After that,
similar to the geometry matching branch, each historical frame
feature augmented with the flow feature, is further utilized to
fuse with the current feature, yielding the flow-aware feature.
Finally, the geometry-aware feature, the flow-aware feature,
and the original current frame feature are fused to predict the
current target object.

In summary, our contributions are as follows:
• We propose HyGFNet, a new hybrid paradigm for 3D

SOT, which leverages both the advantages of geometry
and flow information to track the target.

• We propose a geometry-aware masking module to learn
geometry information at each historical frame, and intro-
duce a flow-aware enhancement module to learn the flow
information between the current frame and each historical
frame. Finally, a spatial-temporal decoder is proposed to
aggregate all geometry and flow information from multi-
frame features respectively.

• The proposed HyGFNet achieves promising perfor-
mances in KITTI and nuScenes datasets. Ablation studies
also verify the effectiveness of each proposed module.
We will release the source code of the method to the
community.

The rest of this paper is organized as follows. In Sec-
tion. II, we discuss the related work. Section. III describes
the detailed structure of our HyGFNet. In Section. IV, we
compare our methods with previous methods in KITTI and
nuScenes datasets, and conduct ablation studies to explore the
effectiveness of each proposed module. Finally, we conclude
in Section. V.

II. RELATED WORK

A. 2D Single Object Tracking

Early approaches in visual SOT usually relied on correlation
filters [12], [13] to find the target object. However, these
methods face limitations as they heavily depend on template
matching and usually use hand-craft features with insufficient
information, leading to limited performance for fast-moving
object tracking. With the advent of convolutional neural net-
work (CNN) and deep learning, many works [14]–[21] adopt
the Siamese CNN network architecture to match the template
and search features, largely improving the overall tracking
performance. Recently, the Transformer architecture [22] has
gained widespread application in visual SOT due to its global
receptive field and enhanced similarity modeling capabilities.
Therefore, many works tried to use the attention mechanism in
visual SOT. TransTrack [23] replaces the correlation operation
with the attention mechanism to model long-distance feature
association. TransMeet [24] introduces transformer in the
video clip to learn spatial-temporal information and achieves
better performance. Stark [25] also proposes a transformer-
based tracking framework to capture the long-range depen-
dency in both spatial and temporal spaces, eliminating the
need for hyperparameter-sensitive post-processing. Addition-
ally, MixFormer [26] proposes iterative mixed attention, uni-
fying feature extraction and target integration and leading
to a neat and compact tracking pipeline. Different from the
above models that directly predict the target, ToMP [27]
proposes a transformer-based target model prediction network
to estimate the weights of the target model. Moreover, inspired
by MAE [28], DropMAE [29] proposes an adaptive spatial-
attention dropout method to facilitate temporal correspondence
learning in self-supervised pre-training on videos. Despite
the success of the matching paradigm in visual SOT, the
significant difference between the structures of the point cloud
and the image poses a considerable challenge in leveraging the
matching paradigm for 3D SOT.
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Fig. 2. Overview of our proposed HyGFNet. The network consists of two branches named Geometry Matching Branch (GMB) and Flow Estimation Branch
(FEB) respectively. In the GMB, the proposed geometry-aware masking module first enhances the geometry information at each historical frame feature.
Then, the proposed spatial-temporal geometry decoder integrates the multi-frame geometry information into the current feature. In the FEB, the flow-aware
enhancement module obtains the flow-aware feature for each historical frame based on flow estimation. The enhanced feature is further used to fuse with the
current frame by the proposed spatial-temporal motion decoder. Finally, we fuse the geometry-aware feature, flow-aware feature and the original feature and
use a center-manner head to predict the box.

⊙
means feature concatenation.

B. 3D Single Object Tracking

Similar to 2D SOT, most previous 3D SOT methods [2],
[3], [5], [6] also depend on geometry matching between the
template and search point cloud to track the target object.
P2B [2] computes the point-wise cosine similarity map to
augment the feature and uses VoteNet [30] to regress the 3D
bounding box of the target. Based on that, BAT [3] enhances
the point features with the box prior information to better
capture the point-wise similarity. V2B [6] converts the unorder
point features into dense BEV features and predicts the box
in a dense manner. Inspired by the attention mechanism,
PTT [4], LTTR [5], SMAT [9], PTTR [7], and STNet [10] also
leverage the Transformer to capture the global geometry in-
formation within or between the point clouds. Benefiting from
the outstanding similarity modeling and global perception of
attention mechanisms, these methods have achieved impressive
tracking performances. However, limited by the sparseness of
point clouds, the geometry matching paradigm still encounters
challenges in sparse and complex scenes. To address this
problem, M2-Tracker [11] proposes a motion-based framework
to estimate the rigid box transformation between the previous
frame and the current frame, leading to a more robust and
accurate performance. The method first segments the fore-
ground points in the current frame and then estimates a coarse
bounding box. A refinement module is further used to refine
the box to get a more accurate prediction. Nevertheless, in
scenarios with large time intervals, this approach may also
fail to track the target object accurately due to inaccurate
motion estimation. Therefore, we can integrate the above
two paradigms to leverage their advantages to address the
challenges in the tracking process. However, how to integrate
the two different paradigms still remains under-explored.

C. Scene Flow Estimation on 3D Point Clouds

3D scene flow was first introduced by Vedula et al. [31]
and aims to directly estimate dense rigid motion fields in 3D
LiDAR scans. Previous works usually estimate scene flow
by using optical flow and depth information from RGB-D
data [32]–[34]. Nowadays, with the advent of deep learning
and LiDAR sensors, many works estimate the scene flow from

raw point clouds with deep neural networks. FlowNet3D [35]
first proposes an end-to-end framework to estimate the scene
flow based on PointNet++ [36]. They introduce a flow embed-
ding layer to aggregate geometric similarities and spatial rela-
tions for point motion encoding. HPLFlow-Net [37] proposes
several modules to restore structural information from point
clouds and fuse information. FESTA [38] proposes a spatial-
temporal attention mech anism to estimate 3D scene flow from
point clouds. Bi-PointFlowNet [39] proposes a bi-directional
flow embedding module along forward and backward direc-
tions to enhance the estimate performance. Although these
methods have achieved significant performances, they intro-
duce an excessive number of parameters, making the networks
overly complex. Therefore, FLOT [40] utilizes optimal trans-
port tools to estimate scene flow and achieves competitive
performance with less parameters. SPFlowNet [41] proposes
an iterative superpoint-based framework that could simulta-
neously optimize the flow-guided superpoint generation and
superpoint-guided flow refinement. Inspired by these works,
we utilize the flow information for the 3D SOT task.

III. METHODOLOGY

A. Problem Definition

Given the 3D bounding box B0 = (x0, y0, z0, w, h, l, θ0) ∈
R7 of the specific target in the initial frame, 3D SOT aims
to locate the target object in subsequent frames and predict
its target state Bt = (xt, yt, zt, θt) ∈ R4 at t frame, where
(x, y, z) is the bounding box center, and θ is the heading
angle. Meanwhile, as we usually assume that the size of the
target object (w, h, l) remains constant throughout the tracking
process [2], [3], [9], [11], we directly use the size value given
in the first frame.

Suppose we have N consecutive frames point cloud at t
frame ranging from Pt−N to Pt. Meanwhile, the previously
N − 1 predicted target boxes {Bi}t−1

t−N could be preserved
for utilization. For previous geometry matching paradigm, the
SOT task could be formulated as follows:

F({Bi}t−1
i=t−N , {Pj}tj=t−N ) 7→ Bt (1)
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Fig. 3. (a) Detailed structure of Geometry-aware Masking Module. For each historical frame feature, we first predict a BEV box mask, and use the
predicted mask to enhance the feature with multi-head attention to output a geometry-aware feature. (b) Detailed structure of Flow-aware Enhancement
Module. For each historical frame feature, we first concatenate it with the current frame feature to generate a flow feature, followed by the motion state and
flow prediction heads. Finally, the flow feature is fused with the historical frame feature to output the flow-aware features.

⊙
,
⊕

means feature concatenation
and feature adding respectively.

Meanwhile, for the motion paradigm [11], the SOT could
be formulated as follows:

F(Bt−1, {Pj}tj=t−1) 7→ Mt,Bt (2)

where Mt is the segmented foreground mask at the current t
frame. Based on Mt, the foreground point at the current frame
could be classified and used to regress the box transformation.

Different from the above two paradigms, our method could
be formulated as follows:

F({Pj}tj=t−N ) 7→ {Mi}t−1
i=t−N ,Bt, {Sj→t}t−1

j=t−N (3)

where Sj→t is the flow from frame j to the current t frame.
Therefore, in comparison to the above two paradigms, we not
only predict the foreground mask for all historical frames but
also forecast the flow field from every historical frame to the
current frame.

B. Overview

Following Equation. 3, we propose the hybrid paradigm
framework, HyGFNet, to leverage both geometry and flow
information from historical frames to locate the target object
in the current frame. As illustrated in Figure. 2, given N
consecutive frames point clouds ranging from Pt−N to Pt,
we follow [42] to extract basic point feature of each frame,
denoted by Xi ∈ RW×H×C for i-th frame. Here W , H are the
grid size of the feature map, and C is the basic feature channel.
Meanwhile, the proposed HyGFNet consists of two branches,
named geometry matching branch and flow estimation branch,
to process geometry and flow features respectively. Then, we
propose a Geometry-aware Masking Module and a Flow-aware
Enhancement Module to learn geometry and flow information
in the two branches respectively. Finally, an attention-based
spatial-temporal decoder is proposed to fuse the multi-frame
geometry-aware and flow-aware features to augment the cur-
rent frame feature for prediction. The details are presented in
the following sections.

C. BEV Feature Extraction

Compared to images, point clouds are usually sparse, es-
pecially at long distances, making feature extraction and pre-
diction difficult [6]. Therefore, some previous works usually
directly voxelize raw point clouds to voxels to extract dense

voxel features [5], [9] or utilized PointNet to extract point
features and then transform the point features into dense BEV
features for dense predictions [6]. In this work, to avoid this
problem, we follow previous works [5], [9], [43] to convert
points to pillars and directly extract dense BEV features.
Specially, we first project the raw point cloud to the BEV X-
Y plane and extract the projected pillar features using a mini
PointNet [44], getting a sparse 2D pseudo-image. Then, we
utilize a U-Net-like 2D CNN-based network [45], [46], which
is widely used in 3D object detection, to process the pseudo-
image with stride 1×, 2×, and 4× 2D convolution blocks. The
multi-scale features are then concatenated and generate a 2×
BEV dense basic feature map for subsequent processing.

D. Geometry-aware Masking Module

We first propose Geometry-aware Masking Module (GMM)
to fully utilize the geometry information at each frame. As
shown in Figure. 3(a), for basic feature X of each frame,
we first use two Conv2D blocks, each of which consists of
conv-bn-relu and termed as Projection Conv, to encode its
feature. Then, a Conv2D layer and sigmoid layer are used to
predict the BEV foreground mask M ∈ RW×H×1. By training
the features to predict BEV box masks, we can enhance the
ability of features to capture the geometric information of
the target. Moreover, the predicted mask is further used to
fuse with the projected feature. Specially, we use the attention
mechanism [22] for its good integration of global information.
The projected feature is flattened to X ′ ∈ RWH×C1 and serves
as query, key and value feature, while the mask is added to key
and value to focus on the geometry information of foreground
points as follows:

Q = Proj(X ′) (4)
K = V = Proj(X ′) +M (5)

A = softmax
(Q · KT

√
d

)
(6)

X ′′ = A · V (7)

where d is the feature channels. To train the network to predict
the BEV mask, we generate the ground-truth BEV box mask
based on the history 3D ground-truth bounding box. Specially,
the history 3D bounding box is converted to 2D BEV box,
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and all pixels within the BEV box will be considered as
foreground, while otherwise is the background:

Mp =

{
1, if p ∈ BBEV

0, else
(8)

Meanwhile, in order to simulate the historical prediction error
in the inference phase, we randomly add offsets and rotation to
the historical ground-truth box in the training phase. Therefore,
by predicting the BEV box mask and integrating it into the
point feature, the GMM not only makes the feature capture the
geometry information better, but also eliminates cumulative
errors for historical predictions.

E. Flow-aware Enhancement Module

In parallel with the aforementioned GMM, we introduce
the Flow-aware Enhancement Module (FEM) to enhance each
historical frame feature. Different from the scene flow that is
defined on each point, here we predict the flow on each grid
point on the BEV X-Y plane. Meanwhile, because the flow is
defined as the point-level motion between two frames, we need
to utilize both the current frame feature and each past frame
feature. Here we adopt a simple yet efficient approach that
directly concatenates the two features. As shown in Figure. 3
(b), we first concatenate the i-th frame feature Xi and the
current frame feature Xt along the feature channel, getting the
basic flow feature Xi→t ∈ RW×H×2C . Then, a series of 2D
CNN blocks, termed as Motion Conv, are applied to the feature
to learn the flow feature between the two frames. Followed by
two motion prediction heads, we could obtain a dense BEV
motion state and a dense BEV flow for each grid in the i-th
historical frame feature. The motion state indicates whether
each grid point in the BEV plane is in a moving or stationary
state, while flow represents the BEV X-Y offset for each grid
point. Finally, we add the flow feature to the basic i-th frame
feature and use a flow enhancement conv which includes a
2D CNN block to process and enhance the fusion feature.
The FEM could be formulated as follows:

Xi→t = f1(Xi · Xt) (9)
Si→t = h1(Xi→t) (10)
Gi→t = h2(Xi→t) (11)
X ′

i→t = f2(Xi · Xi→t) (12)

where f1, f2, h1, h2 mean Motion Conv, Flow Enhancement
Conv, Flow Head, and State Head respectively. Si→t, Gi→t

mean the flow and the moving state BEV map respectively.
• represents concatenation operation. By predicting the grid
point-level motion states and flows, we can obtain more
refined motion representations and capture more local flow
information. By fusing the flow features used for prediction
with the corresponding frame features, we obtain flow-aware
features for subsequent spatial-temporal fusion.

To train the network to predict the dense motion state
and flow, we need corresponding ground-truth flow labels
to provide supervision. However, in the SOT task, we only
have one 3D bounding box label for each batch, which is a
sparser representation. To get the dense flow label, inspired

(a) Point cloud at i-th and j-th frames (b) Motion Statement Label (c) Scene Flow Label

Fig. 4. Generated flow label. (a) The two point cloud Pi and Pj , shown
in grey and red. Their corresponding 3D boxes Bi,Bj are also shown in
green and red respectively. (b) The generated motion state label, the red grids
represent moving parts and the others are static. (c) The generated scene flow
label.

by previous flow works [47], we generate the dense flow label
based on the consecutive bounding boxes and point clouds.
Given two frames of data along with their corresponding
ground truth 3D bounding boxes Bi,Bj and point clouds
Pi,Pj , and suppose we need the flow label from i-th frame
to j-th frame. We first compute the rigid transform Ri→j and
Ti→j between Bi and Bj , where Ri→j and Ti→j represent
relative rotation and translation respectively. Then, we extract
all foreground points Pf

i within the bounding boxes Bi from
the point clouds Pi. We apply the obtained translation Ri→j

and rotation Ti→j to the cropped foreground points Pf
i , and

then use the transformed points subtract with Pf
i , generating

the dense flow label Si→j . For the ground-truth motion state
label Gi→j , we set a motion threshold α to classify each
point into static or moving based on their flow. The generation
process could be represented as follows:

Ri→j , Ti→j = Bj − Bi (13)

Pf
i = Crop(Bi,Pi) (14)

Pf
i→j = Ri→j [Pf

i ] + Ti→j (15)

Si→j = Pf
i→j − Pf

i (16)

Gi→j =

{
1, if Si→j < α

0, else
(17)

As shown in Figure. 4, by processing the data with the
above pipeline, we can obtain dense point-level flow labels
from original sparse box-level labels, and we could train our
module to predict the dense flow. We set α as 0.5 in our
implementation.

F. Spatial-Temporal Decoder

After getting the geometry-aware feature and flow-aware
feature for each historical frame, we would like to fuse these
features with the current frame feature and thus propagate
the geometry and flow information to the current for better
prediction. Considering the global dependence of attention
mechanism [22], we propose a transformer-based Spatial-
Temporal Decoder (STD) to extract global information from
all N frame features. The proposed STD is applied in both
geometry and flow branches. As shown in Figure. 5, we first
use a shared 2D CNN-based block (shared within each branch)
to project each frame geometry-aware or flow-aware feature
to a shared feature space for attention computation. Then, the
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⊙
means feature
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projected feature is flattened to the size of (WH) × C2, and
all flatted N frame features are concatenated, constructing the
spatial-temporal feature with size (NHW )×C2. The spatial-
temporal feature is processed by the self-attention-based de-
coder to model the global geometry or flow information.
Finally, the decoded feature is split into N × (HW ) × C2

features and the current frame feature is unflatted back into
W ×H ×C2. By using the STD in both branches, we obtain
the final geometry-aware feature and flow-aware feature. We
fuse the two features with the original basic feature Xt and
input the fused current frame feature to the head to predict the
current box.

Another approach is taking the current feature as query,
the other feature as key and value, and using the cross-
attention to fuse them. However, in cross-attention, there is no
explicitly defined query-key relationship; instead, it requires
an implicit calculation using softmax(QKT ). Differently, in
self-attention, the concatenated multi-frame features inherently
incorporate the explicit spatial-temporal information. There-
fore, we can better model global spatio-temporal information.
We will provide a more detailed comparison in the ablation
study section.

By using the attention-based decoder to fuse the multi-
frame features, we could learn spatial-temporal geometry and
flow information for the target object. Meanwhile, we use
the deformable attention [48] to replace the vanilla attention,
avoiding too much computation cost and speeding up the
training time.

G. Training Loss

We predict the target center and orientation with the fused
feature in a center manner following CenterPoint [49]. Spe-
cially, we predict the heatmap, offset map, height map and
orientation map with 2× downstride. Thus, the total head loss
is formulated as follows:

Lhead = λclsLcls+λoffsetLoffset+λzLz+λyawLyaw (18)

where we use focal loss [50] as Lcls to train heatmap
classification and adopt L1 loss as Loffset, Lz, Lyaw for the
attribute regressions. λcls, λoffset, λz, λyaw are weights for
these losses, respectively. Meanwhile, since we predict the

historical BEV box mask and the BEV flow in the proposed
GMB and FEB, we also need the following losses:

Lbranches = λmaskLmask +λflowLflow +λstateLstate (19)

We also use focal loss [50] as Lstate to train motion state, L1
loss as Lflow and binary cross entropy as Lmask. Therefore,
the overall training loss is:

L = Lhead + Lbranches (20)

IV. EXPERIMENTS

A. Experimental Settings

Datasets. We train and evaluate our proposed HyGFNet
on two commonly used large-scale datasets, KITTI tracking
dataset [51] and nuScenes dataset [52]. KITTI tracking dataset
includes more than 20,000 manually labeled 3D objects using
Velodyne HDL-64E 3D lidar (10HZ). We follow previous
works setting [2], [3], [5] to split this dataset as follows: scenes
0-16 for training, scenes 17-18 for validation, and scenes 19-20
for testing. nuScenes [52] is a larger dataset containing a total
of 1,000 scenes with 20s duration in each. Each frame contains
about 300,000 points and has 360-degree view annotations for
various objects. Compared to KITTI dataset, nuScenes is more
challenging for object tracking since it has more challenging
scenes. Following the setting of previous works [3], [11], we
also adopt the official 700 train scenes to train and the 150
val scenes to test.
Evaluation Metrics. Following previous works [2], [3], [11],
we also use One Pass Evaluation (OPE) as the evaluation
metric, including Success and Precision. Specially, the Success
measures the 3D IoU between the predicted box and ground
truth box, ranging from 0 to 1, while the Precision measures
the accuracy between the predicted target center and ground-
truth center, ranging from 0 to 2 meters. We report the two
metrics for each category and then compute the two types of
Mean performance. The F-Mean is computed based on the
number of frames in each category and could be formulated
as follows:

V F
mean =

∑N
n=1 Vn × Fn∑N

n=1 Fn

(21)
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TABLE I
PERFORMANCE COMPARISON ON THE KITTI DATASET.

Method Paradigm
Car Ped. Van Cyc. F-Mean C-Mean

6,424 6,088 1,248 308 14,068 14,068

Su
cc

es
s

SC3D [1]

Match

41.3 18.2 40.4 41.5 31.2 35.4
P2B [2] 56.2 28.7 40.8 32.1 42.4 39.5
PTT [4] 67.8 44.9 43.6 37.2 55.1 48.4
BAT [3] 60.5 42.1 52.4 33.7 51.2 47.2

LTTR [5] 65.0 33.2 35.8 66.2 48.7 50.1
V2B [6] 70.5 48.3 50.1 40.8 58.4 52.4

C2FT [53] 67.0 48.6 53.4 38.0 57.2 51.8
MLSET [54] 69.7 50.7 55.2 41.0 59.6 54.2

PTTR [7] 65.2 50.9 52.5 65.1 57.9 58.4
DMT [55] 66.4 48.1 53.3 70.4 55.1 59.6
SMAT [9] 71.9 52.1 41.4 61.2 60.4 56.7
STNet [10] 72.1 49.9 58.0 73.5 61.3 63.4
GLT-T [56] 68.2 52.4 52.6 68.9 60.1 60.5
PCET [57] 68.7 56.9 57.9 75.6 64.8 64.8
CAT [58] 66.6 51.6 53.1 67.0 58.9 59.6
PTIT [59] 68.6 56.7 53.8 74.2 62.6 63.3

CorpNet [60] 73.6 55.6 58.7 74.3 64.5 65.6
OSP2B [61] 67.5 53.6 56.3 65.6 60.5 60.8

M2-Tracker [11] Motion 65.5 61.5 53.8 73.2 62.9 63.5
Ours Hybird 68.0 60.0 56.7 75.9 63.7 65.2

P
re

ci
si

on

SC3D [1]

Match

57.9 37.8 47.0 70.4 48.5 53.3
P2B [2] 72.8 49.6 48.4 44.7 60.0 53.9
PTT [4] 81.8 72.0 52.5 47.3 74.2 63.4
BAT [3] 77.7 70.1 67.0 45.4 72.8 65.1

LTTR [5] 77.1 56.8 45.6 89.9 65.8 67.4
V2B [6] 81.3 73.5 58.0 49.7 75.2 65.6

C2FT [53] 80.4 75.6 66.1 48.7 76.4 67.7
MLSET [54] 81.0 80.0 64.8 49.7 78.4 68.9

PTTR [7] 77.4 81.6 61.8 90.5 78.1 77.8
DMT [55] 79.4 77.9 65.6 92.6 75.8 78.9
SMAT [9] 82.4 81.5 53.2 87.3 79.5 76.1
STNet [10] 84.0 77.2 70.6 93.7 80.1 81.4
GLT-T [56] 82.1 78.8 62.9 92.1 79.3 79.0
PCET [57] 80.1 85.1 66.1 93.7 81.3 81.3
CAT [58] 81.8 77.7 69.8 90.1 79.1 79.9
PTIT [59] 81.2 86.3 70.7 92.5 82.7 82.7

CorpNet [60] 84.1 82.4 66.5 94.2 82.0 81.8
OSP2B [61] 82.3 85.1 66.2 90.5 82.3 81.0

M2-Tracker [11] Motion 80.8 88.2 70.7 93.5 83.4 83.3
Ours Hybird 79.3 86.6 67.1 93.9 85.6 85.2

where Vn and Fn mean the value and frames of each category,
and N is the number of categories. The C-Mean is computed
by averaging all categories as:

V C
mean =

∑N
n=1 Vn

N
(22)

Implementation Details. For our pillar-based network, we
need a fixed search region to crop the point cloud to input
to the pillar backbone. Meanwhile, different types of objects
have different sizes, thus we set different point cloud ranges
for different objects. Specially, we set the point cloud range
of [(-4.8, 4.8), (-4.8, 4.8), (-3, 3)] meters and voxel size of

TABLE II
PERFORMANCE COMPARISON BETWEEN OURS AND M2-TRACKER ON THE

MODIFIED KITTI.

Category Car Pedestrian Van Cyclist F-Mean C-Mean
Frame Number 1328 1248 255 65 2896 2896

Success M2-Tracker [11] 40.4 19.9 16.4 16.6 28.9 26.4
Ours 58.1 28.1 28.9 46.0 42.3 40.3

Precision M2-Tracker [11] 46.9 34.0 16.0 17.3 38.0 38.1
Ours 68.0 40.9 35.1 60.0 53.2 51.0

TABLE III
PERFORMANCE COMPARISON ON THE NUSCENES DATASET. PED AND BIC

IS AN ABBREVIATION FOR PEDESTRIAN AND BICYCLE. - MEANS NOT
AVAILABLE.

Method Modality
Car Ped. Truck Bic. F-Mean C-Mean

64,159 33,227 13,587 2,292 113,265 113,265

Su
cc

es
s

SC3D [1]

Match

22.31 11.29 30.67 16.70 19.97 20.24
PTT [4] 41.22 19.33 50.23 28.39 35.52 34.79
P2B [2] 38.81 28.39 42.95 26.32 35.99 34.12
BAT [3] 40.73 28.83 45.34 27.17 37.52 35.52

PTTR [7] 58.61 45.09 44.74 - - -
SMAT [9] 43.51 32.27 44.78 25.74 40.00 36.58
CAT [58] 43.34 30.68 47.64 - - -
PTIT [59] 52.50 - 51.60 - - -

M2-Tracker [11] Motion 55.85 32.10 57.36 36.32 48.67 45.41
Ours Hybrid 58.52 40.76 55.32 37.72 52.51 48.08

P
re

ci
si

on

SC3D [1]

Match

21.93 12.65 27.73 28.12 20.03 22.61
PTT [4] 45.26 32.03 48.56 51.19 41.89 44.26
P2B [2] 43.18 52.24 41.59 47.80 45.74 46.20
BAT [3] 43.29 53.32 42.58 51.37 46.31 47.64

PTTR [7] 51.89 29.90 45.30 - - -
SMAT [9] 49.04 60.28 44.69 61.06 52.06 52.77
CAT [58] 49.41 56.67 48.10 - - -
PTIT [59] 61.90 - 52.30 - - -

M2-Tracker [11] Motion 65.09 60.92 59.54 67.50 63.23 63.26
Ours Hybrid 72.14 73.05 60.74 71.88 71.03 69.45

[0.075, 0.075, 6] meters for Car and Van. For cyclist, we set
a point cloud range of [(-3.2, 3.2), (-3.2, 3.2), (-3, 1)] meters
and a voxel size of [0.05, 0.05, 6] meters. For pedestrian,
[(-1.6, 1.6), (-1.6, 1.6), (-3, 1)] meters and [0.025, 0.025,
4] meters are set for point cloud range and voxel size. For
truck, we set [(-12.8, 12.8), (-12.8, 12.8), (-10, 10)] meters
and [0.2, 0.2, 20] meters for point cloud range and voxel size.
[(-12.8, 12.8), (-12.8, 12.8), (-10, 10)] meters and [0.2, 0.2,
20] meters for Truck. For network details, we use the dynamic
pillar [42] and a U-Net-like 2D CNN network [46], which are
widely used in 3D detection, as our 3D and 2D backbone. For
our attention-based decoder, we follow the common setting in
Vision Transformer [62], [63] and set heads as 8, layers as
6. Moreover, we train our model with adam optimizer with
the initial learning rate of 0.003, weight decay of 0.01 for
both datasets, and train 80 epochs in KITTI but 40 epochs in
nuScenes. We use 4 NVIDIA 3090 GPUs and set 32 batch
size in each in the training phase.
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GT BAT M2-Track Ours

Fig. 6. Visualization of tracking results on KITTI dataset. From top to bottom, we compare our HyGFNet with BAT, M2-Tracker and show the cases of
Car and Pedestrian categories.

B. State-of-the-arts Comparison

Quantitative results on KITTI. As shown in Table. I, our
HyGFNet achieves competitive tracking performance in the
KITTI tracking dataset. Specially, our method outperforms
the motion paradigm method M2-Tracker [11] by 0.8%/1,7%
in F-Mean/C-Mean Success respectively. Moreover, for pre-
vious match paradigm methods [3], [7], [9], [10], [57], [60],
although they could achieve better tracking performance in
the Car category [9], [10], [57], [60], they usually have
limited tracking performance in the Pedestrian category. Com-
pared to Car, Pedestrian targets usually have sparser point
clouds and are more sensitive to interference from surrounding
pedestrians. Therefore, it is challenging for match paradigm
methods to track Pedestrian objects accurately. However, by
utilizing the flow information from history frames, our method
could achieve a better performance in Pedestrian tracking,
surpassing PCET [57], which is the best match paradigm in
the Pedestrian category, by 3.1% and 1.5% in Success and
Precision respectively. The results indicate that by combining
motion and match paradigms, we can achieve better and more
balanced tracking results.

Moreover, to explore the tracking performance with larger
relative motion, we compare our method with M2-Tracker in a
modified KITTI dataset. Specially, to build the dataset, we take
one frame out of every 5 frames in KITTI dataset as a valid
frame. Compared to the original KITTI dataset, the modified

dataset has a larger relative motion between two consecutive
frames. We train our method and M2-Tracker in the modified
dataset. We follow their public default setting1 to train M2-
Tracker. As shown in Table. II, our method still achieves better
performance, surpassing the M2-Tracker both in Success and
Precision. The results verify our discussion in Section. I that
the motion paradigm methods usually have difficulty tracking
the target object with larger motion. By using the geometry
matching information, our method could alleviate this problem
and track the target object better.
Quantitative results on nuScenes. As shown in Table. III, our
method also achieves state-of-the-arts tracking performance in
the nuScenes dataset. Specially, our method outperforms M2-
Tracker by 3.84% and 2.67% in F-Mean and C-Mean Success
respectively. We believe that as analyzed in the previous
section of the KITTI comparison, by combining the advantages
of geometric matching and flow estimation paradigms, our
method could achieve better tracking results. Meanwhile, com-
pared to previous geometry matching paradigm methods [2]–
[4], [9], [58], our method improves the tracking performance
in all categories, especially in the Pedestrian category. Mean-
while, compared to the KITTI dataset, nuScenes dataset has
much more testing frames (113265 vs 14068), more testing
scenes (150 vs 2) and sparser points (32-beam vs 64-beam).
The results also verify the effectiveness and the scalability of

1https://github.com/Ghostish/Open3DSOT/tree/main/cfgs
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Fig. 7. Robustness Comparison. (a) Effect of the number of points in the first frame. In most cases, our HyGFNet outperforms other methods by a
significant margin. (b) Effect of different point cloud downsampling ratios. Compared to M2-Tracker, our method shows better performances under different
downsampling ratios. (c) Effect of different number of distractors. Compared to M2-Tracker, our method still achieves better performances when facing
different numbers of distractors.

TABLE IV
TIME CONSUMPTION OF EACH MODULE IN OUR HYGFNET.

Module Backbone GMM FEM

Time 17.16 ms 4.69 ms 4.01 ms

Module G-STD F-STD Head

Time 8.76 ms 7.81 ms 1.79 ms

TABLE V
COMPARISON OF THE RUNNING SPEEDS.

Method SC3D [1] P2B [2] PTT [4] BAT [3] LTTR [5]
FPS 1.8 45.5 40.0 57.0 22.3

Method V2B [6] C2FT [53] MLSET [54] PTTR [7] DMT [55]
FPS 13.0 50.0 61.0 71.5 51.0

Method OSP2B [61] SMAT [9] STNet [10] GLT-T [56] PCET [57]
FPS 34.0 17.6 35.0 30.0 50.0

Method CAT [58] PTIT [59] CropNet [60] M2-Tracker [11] Ours
FPS 45.3 32.8 36.0 57.0 22.6

our method.
Visualization results on KITTI. We also visualize some
tracking results in KITTI tracking dataset in Figure. 6. As
shown in the 1st and 4th rows, when there comes a similar
distractor object, our method could continue to consistently
track the target object, while the matching paradigm method,
BAT [3], usually loses the target object. In the scene with a few
points, such as the 2nd case, BAT and M2-Tracker gradually
lose the target object. However, although it is also very difficult
for our method to track the target, we ultimately returned to
the target object.
Running speed. The time consumed by each module of
the network is shown in detail in Tab. IV. Meanwhile, we
also compare our method with other methods in running
speed in Table. V. Our speed still could satisfy the real-
time requirements, i.e. ( >10 FPS ). Meanwhile, compared to
the other BEV-based methods, such as LTTR [5], V2B [6],
SMAT [9], though we need to process more frame point
clouds, our method still shows faster running speed.

C. Robustness Comparison

To further explore the robustness of our method, we com-
pare our HyGFNet with other methods in some challenge

scenes. We conduct these robustness comparison on the Car
category of KITTI dataset.
Robustness to Sparseness. We follow previous works [1]–
[3], [9] to compare the tracking performance under different
numbers of points in the first frame. As shown in Figure. 7 (a),
our method achieves better balanced and higher performance
in most comparison sparse levels, especially in the targets with
fewer than 30 points.
Robustness to Downsampling. We further compare our
HyGFNet with M2-Tracker with different point cloud down-
sampling ratios to explore the robustness to the sparsity of
input point cloud. We downsample the point clouds with
different sampling ratios and input the downsampled point
clouds to the compared two models. As shown in Figure. 7
(b), our method achieves better performance under different
sampling ratios. The result further confirms the robustness of
our method to sparsity.
Robustness to Distractors. Finally, to explore the robustness
of distractors, we add multiple objects of the same category
with the target object (car) in the tracking scenes. As shown in
Figure. 7 (c), we compare our HyGFNet with M2-Tracker with
different numbers of distractors. Although our method and M2-
Tracker both have a large performance decline, our HyGFNet
still achieves better performance, verifying our robustness to
distractors.

D. Ablation Study

To validate the effectiveness of our proposed modules,
including GMM, FEN and STD, we conduct ablation studies
on the Car category of KITTI dataset.
Model Components. We first conduct ablation studies on
the main components to explore the effects of each module.
As shown in Table. VI, we first build a baseline model
(A1) that directly fuses the input multi-frame features with
concatenating and 2D CNN blocks. We then add our proposed
GMM to the baseline, leading to an improvement of 3.5%
and 3.8% in Success and Precision respectively. Moreover,
the proposed STD (A3) further improves the performance.
For the flow estimation branch, the proposed FEM brings
4.8% and 7.1% improvements in Success and Precision, and
the proposed STD added in the flow estimation branch (A5)
also achieves higher performance. Meanwhile, we also notice
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Fig. 8. Performances with different number of previous frames. We input
different numbers of previous frames, from t− 1 to t− 5. Our method could
achieve higher performance with more previous frames.

that the FEM could bring higher improvements than GMM,
and M-STD also achieves higher performance than G-STD.
We believe that the results imply that motion plays a more
important role than matching in 3D SOT, which is also coher-
ent with the perspective of M2-Tracker. Finally, by utilizing
all proposed modules in both the geometry matching branch
and the flow estimation branch, our method could achieve
better tracking performance, verifying the effectiveness of our
proposed modules.
Input Frames. Since our method utilizes multiple frames as
our input, we also conduct an ablation study to explore the
effect of input historical frames. As shown in Figure. 8, our
method’s performance gradually improves with an increase in
the number of frames. Meanwhile, our method still achieves
a good performance with only t − 1 and t frames, showing
the robustness to the number of frames. We also show the
running speed of the proposed method under different input
frames, shown in Figure. 8(b). Our method could achieve
32.9 FPS with only 1 history frame. However, inputting too
many historical frames introduces too much computational
complexity and longer training times. Therefore, we adopt the
2 historical input frames as our default setting.
Components in GMM. We compare different feature fusion
methods within the proposed GMM shown in Table. VII.
First, as shown in G1, by removing the BEV box mask
prediction, our method has a decrease in performance by
3.8% and 4.7% in Success and Precision respectively. The
result demonstrates the significance of historical BEV mask
predictions. Meanwhile, by using the predicted mask multi-
plies with Key and Value, G2 achieves 66.6% and 77.9%.
We believe that the dot multiplication makes all the predicted
background features zero, breaking the geometry information
of the target. Meanwhile, the prediction errors in the mask
also eliminate information about correct foreground points.
Finally, G3 replaces the multi-head attention with a 2D CNN
block, leading to a performance decline of 3.4% and 5.0%.

TABLE VI
ABLATION OF OUR COMPONENTS. G- AND M- MEAN IN GEOMETRY AND

FLOW BRANCHES RESPECTIVELY.

Geometry Motion Performance
GMM G-STD FEM M-STD 3D Success 3D Precision

A1 57.1 67.9
A2 ✓ 60.6 71.7
A3 ✓ ✓ 61.6 73.8
A4 ✓ 61.9 75.0
A5 ✓ ✓ 64.7 75.3
A6 ✓ ✓ ✓ ✓ 68.0 79.3

TABLE VII
ABLATION STUDIES OF THE PROPOSED GMM.

GMM 3D Success 3D Precision

G1 w/o mask prediction 64.2 74.6
G2 dot Key Value 66.6 77.9
G3 Conv Fusion 64.6 74.3

The result shows that for geometry information, it is better to
use attention to extract global information rather than CNN to
extract local information.
Components in FEM. We compare different flow enhance-
ment strategies in Table. VIII. F1 only uses the flow fea-
ture and does not concatenate with the basic frame feature
like Equation. 12, achieving 65.1% and 76.4% in Success
and Precision respectively. The result shows the importance
of the basic feature in FEM. F2 replaces the Conv-Fusion
with attention-based fusion, leading to a 1.3% and 1.8%
performance degeneration. We believe that the flow estimation
focuses more on local information rather than global infor-
mation, thus the attention mechanism with global perception
may not be effective. Finally, removing the flow estimation
prediction (F3) or motion statement prediction (F4) will result
in a decrease in performance, indicating that they are indis-
pensable.
Components in STD. Finally, we compare different spatial-
temporal information fusion in Table. IX. S1 first replaces
the proposed STD with 2D CNN blocks and achieves 66.0%
and 75.5% in Success and Precision. The result indicates that
simple convolutional fusion is not sufficient for multi-frame
feature fusion. Moreover, to compare the self-attention with
cross-attention in the proposed STD, we replace the cross-
attention in the two branches STD (S2, S3, S4). As the
results show, our “self-self” achieves the best performance.
The results verify our previous hypothesis in Section III-F that
self-attention performs better than cross-attention in extracting
spatial-temporal information.

E. Limitation

Although our proposed HyGFNet achieves better perfor-
mance, we still have some limitations. First, as Table. I and
Table. III show, our method does not show better performance
in large-size object tracking, such as Van in KITTI and Truck
in nuScenes. As discussed in FSD [64], because points often
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TABLE VIII
ABLATION STUDIES OF THE PROPOSED FEM.

FEM 3D Success 3D Precision

F1 only motion 65.1 76.4
F2 Attention Fusion 66.7 77.5
F3 w/o Flow 64.8 77.5
F4 w/o State 64.7 74.3

TABLE IX
ABLATION STUDIES OF THE PROPOSED STD.

STD 3D Success 3D PrecisionConv Attention

S1 ✓ 66.0 75.5
S2 cross cross 67.6 78.8
S3 self cross 67.1 77.2
S4 cross self 67.9 78.5
S5 self self 68.0 79.3

reside on the surface of objects, and the center point of large
objects is farther from the surface, the central point cloud
is less dense, making it more challenging for center-based
head [49] predictions. Second, for some extremely sparse or
fast-moving scenes, it is also difficult for our method to track
the target object accurately and stably.

V. CONCLUSION

In this paper, we introduce a novel hybrid paradigm method
HyGFNet for 3D SOT task. Our proposed network consists of
a geometry matching branch and a flow estimation branch. We
first design a geometry-aware masking module to better learn
geometry information at each historical frame. Then, we intro-
duce a flow-aware enhancement module to enhance each frame
feature with flow information which is used to predict flow and
motion state. Finally, we propose a spatial-temporal decoder
to fuse the multi-frame features and propagate the fused
information to the current frame feature for better prediction.
Extensive experiments show that our HyGFNet significantly
outperforms previous matching and motion paradigm methods
and achieves new state-of-the-arts tracking performance.
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