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3D-SiamRPN: An End-to-End Learning Method
for Real-Time 3D Single Object Tracking

Using Raw Point Cloud
Zheng Fang , Member, IEEE, Sifan Zhou, Yubo Cui , and Sebastian Scherer , Senior Member, IEEE

Abstract—3D single object tracking is a key issue for
autonomous following robot, where the robot should robustly
track and accurately localize the target for efficient follow-
ing. In this paper, we propose a 3D tracking method called
3D-SiamRPN Network to track a single target object by using
raw 3D point cloud data. The proposed network consists of
two subnetworks. The first subnetwork is feature embedding
subnetwork which is used for point cloud feature extraction
and fusion. In this subnetwork, we first use PointNet++ to
extract features of point cloud from template and search
branches. Then, to fuse the information of features in the two
branches and obtain their similarity, we propose two cross
correlation modules, named Pointcloud-wise and Point-wise
respectively. The second subnetwork is region proposal network(RPN), which is used to get the final 3D bounding box
of the target object based on the fusion feature from cross correlation modules. In this subnetwork, we utilize the
regression and classification branches of a region proposal subnetwork to obtain proposals and scores, thus get the
final 3D bounding box of the target object. Experimental results on KITTI dataset show that our method has a competitive
performance in both Success and Precision compared to the state-of-the-art methods, and could run in real-time at
20.8 FPS. Additionally, experimental results on H3D dataset demonstrate that our method also has good generalization
ability and could achieve good tracking performance in a new scene without re-training.

Index Terms— 3D single object tracking, LIDAR point-cloud, siamese network, region proposal network.

I. INTRODUCTION

OBJECT tracking, which is a key issue in computer vision
and robotics, could be used in a wide range of applica-

tions, such as augmented reality, self-driving cars and mobile
robotics. Traditionally, cameras are widely used for object
tracking, known as visual object tracking (VOT). For mobile
robots or self-driving cars, 3D object tracking is usually more
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important than 2D visual tracking. Especially for autonomous
vehicles, mobile robots and unmanned aerial vehicles, they
usually need not only to track the targets robustly, but also
localize (position and orientation) the target objects accurately
for efficient path planning, obstacle avoidance and autonomous
following, etc. Specifically, 3D single object tracking (SOT)
is of great importance for autonomous following robots or
autonomous drones. For example, for an autonomous person
following robot, the robot should robustly track its master
and localize him/her accurately for efficient following control
in the crowd. Another example is autonomous landing of
unmanned aerial vehicles, where the drone need to lock the
target and know the accurate distance and pose of the target
for safe landing.

Existing systems are usually equipped with RGB cameras
to track target objects using 2D images. Cameras have many
advantages for tracking problems, such as they are compact
and cheap, and they can also provide abundant information.
However, 2D visual tracking also has its own limitations in
practice, especially for autonomous person following robots or
autonomous drones. For example, visual tracking usually could
not work robustly in visual degraded or illumination changing
environments which person following robots or autonomous
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drones always suffer. Second, visual tracking usually provides
pixel coordinate of the tracking target, but lacks accurate target
distance information which is important for obstacle avoidance
or path following control.

In addition to visual sensors, nowadays 3D LIDAR sensors
are also widely used in mobile robots or drones. Compared
to 2D images, 3D point cloud generated by laser scanners
has more accurate distance measurement and is more robust
against illumination change. For this reason, 3D point cloud
is also widely used for object or person tracking. However,
in contrast to 2D image processing, the processing of point
cloud data has its own challenges. First, point cloud data is
unordered. For example, a point cloud containing N points has
N! permutations to represent, and different representation leads
to different feature extraction, which makes it hard for neural
networks to learn point cloud features end-to-end. Second,
nowadays point cloud generated by 3D laser scanners is
usually much sparser than 2D image, especially for objects at
long distances. Sparse point cloud carries little environmental
information compared to dense 2D image, which makes it
difficult to extract features from point cloud while feature
extraction is usually a key step in the tracking problem. Third,
3D object tracking needs to estimate not only the position, but
also the size and orientation of the target object. The search
space dimension (e.g. x, y, z, w, h, l, ry) is much higher than
2D visual tracking, which brings great challenges for real-time
tracking. Furthermore, compared with rigid objects tracking
(such as cars), person tracking using sparse point cloud is
more challenging since it is more difficult to extract stable
features with the non-rigid characteristics.

Currently, most existing 3D object tracking methods are
mainly based on the tracking-by-detection framework. In this
framework, tracking methods are usually composed of two
interleaved steps: (i) Target detection: classify point cloud
clusters based on handcrafted features [1]–[3] or features
extracted by CNN [4], [5]. and (ii) Target tracking: determine
the most likely cluster that may be the target object by
using filtering-based tracker [6]–[8]. For methods based on
such framework, there are some shortcomings. For example,
those methods usually have to classify point cloud clusters
for every frame using the target detector, which increases
the computation burden. Meanwhile, the trackers have to
take the output of the detector as their input, which means
they cannot track a target if the detector fails to detect the
target. Third, a good object tracking method should be class-
agnostic, but those methods are usually limited to the specified
kind of objects that the detector could classify. In practice,
these problems limit the performance of the tracking methods.
In recent years, there are also some methods [9]–[12] trying
to focus on the tracking ability to avoid the problems of the
tracking-by-detection framework. For example, a 3D object
tracking network is proposed in [9] by mainly utilizing a 3D
Siamese tracking network with a Shape Completion network.
However, even on a high performance computer with Nvidia
GTX1080Ti, the method still could not run in real-time (only
1.8 FPS in our test). Therefore, it is difficult to be deployed on
small robot systems, like person following robots or drones.
Cui et al. [10] also proposed a Point Siamese Network for

person tracking. However, the method only predicts the posi-
tion (x,y,z coordinates) of the target but no orientation and size
information are predicted. Besides, Zarzar et al. [11] used a
2D Region Proposal Network(RPN) with Bird Eye View(BEV)
representation of LIDAR point clouds to generate a small
number of object proposals for 3D object tracking. However,
the method results in the loss of fine-grained shape information
of point cloud due to the BEV representation and does not take
into consideration the shape deformations that occur when a
person is walking. Recently, Qi et al. [12] adopted a Siamese
Network to tackle 3D object tracking based on VoteNet [13].
However, their method has similar problems to [10], which
could not estimate the size information of objects that are
important in real-scene applications.

In this paper, we propose a 3D tracking method called
3D-SiamRPN Network which could directly output the 3D
bounding box of the target object in real-time by using
raw 3D point cloud. The proposed network consists of two
subnetworks. One is feature embedding subnetwork, the other
one is region proposal subnetwork. The feature embedding
subnetwork has two input branches to extract features from
template and search point cloud respectively. In this subnet-
work, we first use PointNet++ [14] to extract features of point
cloud from both branches. Then, the extracted features from
the two branches are input into a feature fusion module which
is the core of the subnetwork to fuse feature information. The
feature fusion module needs not only to fuse the information of
the two groups of features but also to represent the similarity
of them. For this reason, we propose two types of cross
correlation modules, named Pointcloud-wise and Point-wise
respectively. The second subnetwork is a region proposal
network (RPN). The correlation feature, which is the output
of the cross correlation module, could also be considered as
a weight map for the search feature. Therefore, we input the
product of correlation feature and the search feature to the
region proposal subnetwork to get the proposals and their
corresponding scores. Furthermore, we utilize the bin-based
3D box regression loss for the final proposal generation
to have a more precise prediction. The proposed method
achieved a good balance between speed and accuracy for
real-time applications. Experimental results on KITTI dataset
show that our method has a competitive performance in
both Success and Precision compared to the state-of-the-art
methods, and could run in real-time at 20.8 FPS. Addition-
ally, experimental results on H3D dataset demonstrate that
our method also has good generalization ability and could
achieve good tracking performance in a new scene without
re-training.

The main contributions of this paper are as follows:
• We propose a point cloud-based network for the task

of 3D object tracking. The proposed network takes
siamese architecture and utilizes region proposal sub-
network to track target object. Meanwhile, we use a
search area mechanism to avoid our method heavily
depending on the front-end detector. The detector is
only activated in the first frame or when the target is
totally lost, which makes our method more computational
efficient.
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• To the best of our knowledge, this is the first work to pro-
pose cross correlation modules on 3D point cloud data for
3D object tracking tasks. Our proposed Pointcloud-wise
and Point-wise cross correlation modules are very simple
and effective. Experimental results show that they have
better performance compared to other similarity measure-
ment modules.

• We carried out quantitative and qualitative experiments
to validate the performance of proposed method. Exper-
imental results on KITTI dataset show that our proposed
method has a state-of-the-art performance in most metrics
with real-time speed. Meanwhile, the experiment on H3D
dataset also shows the good generalization ability of our
method.

The rest of this paper is organized as follows. In section II,
we discuss the related work. Section III describes the proposed
3D-SiamRPN method. We validate the performance of our
methods on KITTI and H3D datasets in section IV and we
conclude in section V.

II. RELATED WORK

Currently, object tracking could be mainly divided into 2D
visual tracking and 3D object tracking depends what kind of
sensors are used. In this section, we have a brief overview of
those two kinds of tracking methods.

A. 2D Visual Tracking
Early works in 2D visual tracking were mainly based

on Correlation Filters (CF) [15]–[20]. For example,
Bolme et al. [15] introduced CF to object tracking and
achieved high tracking speed, but the tracking accuracy
is not good enough. After that, Henriques et al. [16]
proposed a new Kernelized Correlation Filter tracker
based on Histogram of Oriented Gradients (HOG) features
instead of raw pixel and achieved a better performance.
Bertinetto [17] combined two image patch representations
that are sensitive to complementary factors to improve
the robustness of the tracker against both color changes
and deformations. However, they are both sensitive to
scale changing. Danelljan et al. [18] solved this by using
33 different scales. After that, Danelljan et al. [19], [20]
used deep features and an interpolation model which highly
improved the performance of the tracker. However, these
methods could not cope with fast deformation well since they
are based on template matching.

Recently, with the advance of deep learning, methods based
on Siamese network [21] become the main framework in visual
tracking. The pioneering work using this architecture is the
fully convolutional siamese network (SiamFC) [22]. In that
paper, it is the first time that researchers treated visual tracking
as a similarity issue and introduced the correlation layer into
the architecture. They also integrated correlation filter [23] into
a layer in CNN network later. The two networks have good
performance in VOT-2014 tracking benchmark [24]. However,
compared to CF methods, their performance of accuracy and
robustness are unsatisfying. Meanwhile, their method is not
suitable for noisy backgrounds and crowded scenes. Different

from [23], Guo et al. [25] adopted videos as input instead
of image pairs in siamese network, which could learn the
consistency of the appearance and background of the object
online. Meanwhile, they made up for the shortcoming of the
update process ignored by the tracker based on the siamese
network, so that the overall accuracy of the network has been
greatly improved. But their method still has some performance
gap compared with CF methods. Afterwards, Li et al. [26]
introduced the RPN to Siamese network. SiamRPN could
regress a preciser 2D bounding box for the target object
and outperform the state-of-the-art methods based on CF.
However, the method does not cope well with disturbances.
Based on [26], Zhu et al. [27] introduced some other datasets
to balance the training samples and augmented negative sam-
ples to improve the discriminating ability of tracker. How-
ever, the basic architecture of network is still restricted at
AlexNet which could not utilize high-level semantic features.
Li et al. [28] broke the restriction and excavated the ability
of deep network. They also proposed a depth-wise layer to do
cross correlation operation and achieved state-of-the-art perfor-
mance on VOT-2018 [29] for short-term video object tracking.
Based on [28], Wang et al. [30] produced class-agnostic object
segmentation masks and rotation bounding boxes estimation.
However, their estimation of segmentation mask is not accurate
enough. Recently, Voigtlaender et al. [31] proposed a Siamese
two-stage detection network for visual tracking, which take
advantage of re-detection of the first-frame template and
previous-frame, to model the object to be tracked. Their
method outperformed all previous methods on six short-term
tracking benchmarks as well as on four long-term track-
ing benchmarks, where it achieves especially strong results.
In summary, 2D visual tracking methods have achieved great
progress in the past decade and have been applied to many
practical scenarios. However, 2D visual tracking methods are
still sensitive to illumination change. Additionally, most 2D
visual tracking methods only obtain pixel coordinate of the
tracking target, however sometimes we need to know the
accurate 3D pose the tracking target.

B. 3D Object Tracking
Previous works usually use tracking-by-detection frame-

work to track 3D objects. They first utilize an off-the-shelf
detector [32], [33] to detect objects and then use proba-
bility methods [6], [34]–[39] to match the detection results
overtime. These tracking methods can be divided into two
categories according to the detectors used, one-stage(single-
shot) detector-based tracking methods [36], [37] and two-stage
detector-based tracking methods [38], [39]. Simon et al. [36]
used a modified one-stage detector [40] to detect target and
used Labelled Multi-Bernoulli Filter to track the target with
100FPS. Luo et al. [37] proposed a one-stage detector and
used the overlap between the detection results to track objects
with 33 FPS. However, [37] mainly focused on the detector
and need to convert point cloud to Bird’s Eye Views (BEV),
which may lose information of point cloud. For two-stage
detector-based tracking methods, Shenoi et al. [38] adopted
a two-stage detector [33] to obtain 3D detection and used
Joint Probabilistic Data Association(JPDA) to perform the
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Fig. 1. The architecture of the proposed network. It consists of two subnetworks: feature embedding subnetwork and region proposal subnetwork.
The rightmost red box is the predicted box and the blue one is the search area. And in the next frame, all point clouds in the search area will be the
search input for the network. Therefore, we could form a closed loop to track object directly.

data matching for tracking with 14FPS. Baser et al. [39] first
used a two-stage detector [32] and then proposed a matching
net to compare detection results with 25 FPS. Generally,
the one-stage detection tends to be faster and simpler, while
the two-stage detection tends to achieve higher precision. Ben-
efiting from the more and more accurate detectors, they could
obtain good performance with simple trackers, but different
detectors will result in different tracking results. However,
those methods usually pay much attention to the detection
or data association part but neglect the tracking part. And,
they usually have high computation cost since they need to
detect objects in every frame. Meanwhile, it could not track
3D objects in an end-to-end manner due to the separation of
the detector and tracker. Recently, with the advance of point
cloud representation based on deep learning [14], [41], [42],
some researchers try to solve this problem based on neural
networks. Frossard and Urtasun [43] proposed a neural net-
work to detect and track 3D object in an end-to-end manner.
Scheidegger et al. [44] also implemented an improved net-
work to detect object and applied PMBM tracking filter to
associate object with a mono-camera. Hu et al. [45] used a
LSTM network to associate 3D vehicle detection results over
time based on a mono-camera to achieve vehicle tracking.
However, these methods both need RGB image information
and rely on object detector to provide prior information.
Recently, some methods try to solve the tracking problem
in an end-to-end manner based on the siamese networks.
Giancola et al. [9] utilized a 3D Siamese network to track
3D object. Meanwhile, they used cosine similarity as their
cross correlation technique to represent the similarity of the
two point clouds. However, they still need a front-end search
method to provide search candidates as their input every frame
and could not run in real-time. To efficiently search for the tar-
get object, Zarzar et al. [11] leveraged a 2D Siamese network
to generate a large number of coarse object candidates on BEV
representation. However, the method is not able to identify

a correct ranking over the other top K candidates, resulting
in the inability to select the optimal candidate. Besides, they
did not focus on more effective cross-correlation methods to
fuse template and search features. Similarly, Qi and Feng [12]
used a Siamese Network to solve 3D object tracking based
on VoteNet [13]. They first fused the template and search
seeds with a specific approach, then they used VoteNet to
generate potential object centers(votes) and estimated position
and orientation of the target center based on those votes.
In their feature fusion approach, they first calculated the
cosine similarity between the template and search seeds, and
then concatenated template seeds and the similarity matrix.
Finally, the concatenated features are input into Multi-layer
perceptron to obtain search area seeds with target-specific
features. However, their method could not regress the size
information of objects and their performance needs to be
improved. In this paper, we aim to improve the predictive
ability of the back-end tracking for single object tracking.
We propose a 3D-SiamRPN network to solve 3D single object
real-time tracking problem by using raw 3D point cloud in an
end-to-end manner.

III. METHOD

The overall architecture of our 3D-SiamRPN network is
depicted in Fig. 1. The proposed network is composed of a
feature embedding subnetwork and a region proposal sub-
network. In inference stage, 3D-SiamRPN not only predicts
3D bounding box of the target object, but also obtains a
predicted search area where the target object may appear in
the next point cloud frame. The final search area is obtained
by applying an additional range D to the predicted bounding
box of target object. After tracking completed for one frame,
the point cloud in the search area in the current frame will
be used as the search input for the network in the next frame.
We introduce each subnetwork in detail in the remainder of
this section.
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A. Feature Embedding Subnetwork
The feature embedding subnetwork includes a feature

extraction network and a cross correlation module. The feature
extraction network takes Siamese architecture to extract fea-
tures from the input point clouds. Then, the cross correlation
module obtains a similarity map between extracted features in
the high-level feature space. The feature extraction network
consists of two branches called template and search branches
respectively. The input of the template branch is the point
cloud of the initialized target object (could be obtained by
reading label), and the input of the search branch is the point
cloud within the search area in the current frame. The two
inputs are denoted by Z and X separately. It should be noted
that the template branch Z will be frozen and stop updating
after initialization, thus we only update the search branch
X in each frame of point cloud. In feature extraction step,
the inputs of two branches are re-sampled to the same size
firstly, and then encoded with the feature extraction network
to obtain point cloud features of the template and search
branches. Hereafter, we call them template feature and search
feature. The two branches of the networks shares parameters
in the point cloud encoder-decoder network so that the two
inputs are implicitly encoded by the same transformation,
which is suitable for the subsequent tasks. After the feature
extraction network, we propose two different types of cross
correlation modules to embed the two features and obtain a
correlation feature representing their similarity. Meanwhile,
the correlation feature could be considered as a weight map for
the search feature. Thus the final output of feature embedding
subnetwork is the product of search feature and correlation
feature. We denote ϕ(z) and ϕ(x) as the output feature maps
of the feature extraction network, and denote ψ and ϕ(x)� as
the correlation feature and the final weighted search feature
respectively.

1) Feature Extraction Network: In order to achieve excellent
tracking performance, we need to extract stable and distinctive
features from 3D point cloud. There are many point cloud
features proposed in the past decade. However, most existing
point cloud features are handcrafted towards specific tasks,
such as PFH, FPFH, VFH, ESF, etc [46]. Tracking methods
based on such kind of features only perform well on specific
object. In order to achieve class-agnostic tracking ability using
raw point cloud, in this paper, we use PointNet++ [14]
with multi-scale grouping to extract point cloud features.
The method first uses a mini-network(T-Net) to align all
points to a canonical space before feature extraction, and then
uses another T-Net to align feature space established by the
Multilayer Perceptron(MLP), which are called input transform
and feature transform respectively. Finally, it uses MLPs to
extract high-level features. This method not only preserves the
integrity of point cloud data mostly but also extracts invariant
features with unordered raw point cloud data. Besides, it also
exploited the sparse and local structure of the point cloud to
further improve the quality of feature extraction.

2) Cross Correlation Module: Cross correlation module fuses
the two sources of features obtained from the feature extraction
network, which is the core operation in feature embedding
subnetwork. Cross correlation module has been used in many

Fig. 2. The two cross correlation modules. (a) The PCW-XCorr module
(b) The PW-XCorr module. The green one is template feature ϕ(z) and
yellow one is search feature ϕ(x), the final correlation feature ψ is in red.
∗ means correlation operation.

ways, such as feature fusion and measurement of similarity.
In 2D visual tracking, SiamFC [22] first uses a cross cor-
relation layer to obtain a response map indicating the target
location. SiamRPN [26] extends the cross correlation layer to
embed higher-level feature information and outputs anchors
and classifications. Furthermore, SiamRPN++ [28] proposes
a lightweight cross correlation layer, called depth-wise cross
correlation, which has fewer parameters but achieves better
performance. In 3D object tracking, SC3D [9] use a simple
cosine distance to represent the similarity between two pairs
vectors. P2B [12] also use the same cosine similarity as SC3D
to indicate which part of the search point cloud is more similar
to the template point cloud. However, the cosine distance
only measures the cosine value of angle between two vectors.
Although it is suitable for images, it is not necessarily suitable
for point cloud data. As far as we know that there is almost no
method using cross correlation module for point cloud object
tracking yet.

In this paper, we present two types of cross corre-
lation modules, named Pointcloud-wise Cross Correlation
(PCW-XCorr) and Point-wise Cross Correlation(PW-XCorr)
respectively, as shown in Fig. 2. The two modules can both
fuse the information of features and obtain a similarity feature.
The main difference between them is how the features are
convolved. In the PCW-Xcorr module, the N×F size template
feature ϕ(z) is first divided into N individual 1× F size point
features. Each point feature is considered to be a kernel to do
correlation operation on the N × F size search feature ϕ(x).
Therefore, for the search feature, N correlation operations by
a 1 × F kernel will produce a feature map with the size of
N × N . After all cross correlation operations, we concatenate
all of these features and apply a max pooling layer to obtain
a N × 1 size correlation feature.

However, the PCW-XCorr module focuses more on the
global similarity between two groups of features (template
feature and search feature), and it is computational demanding
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since the entire search feature is convolved every time. There-
fore, we propose an alternative approach that focuses more
on local similarity and avoid heavy computation. Different
from PCW-XCorr module, PW-XCorr divides both ϕ(z) and
ϕ(x) into N individual 1 × F size point features to do cross
correlation operation point by point. It should be noted that
the features of template and search point cloud extracted
by PointNet++ have the same transformation since the two
branches of the feature extraction network share network
parameters and have already been aligned in high-level space
using a T-Net. Therefore, the order of points in raw point
cloud has no influences on the cross correlation operation.
After the cross correlation operation, we could obtain a 1 × 1
feature for each point which indicate the local similarities.
These local similarities could constitute the global similarity,
thus we concatenate all 1×1 output features to obtain a N ×1
size correlation feature ψ .

The two modules could be formulated as follows:
ψ = max(

∑
i∈N

ϕ(zi )⊗ ϕ(x)) (1)

ψ =
∑
i∈N

ϕ(zi )⊗ ϕ(xi ) (2)

where ⊗ means cross correlation operation, N is the number
of the points in point cloud, ϕ(zi ) and ϕ(xi) are corresponding
point features of i th point in ϕ(z) and ϕ(x) respectively.

By applying the two types of cross correlation modules,
we can obtain a correlation feature ψ to describe the similarity
between features from two branches. Specifically, if a point
in search feature is more similar with a point in template
feature in PW-XCorr module, its corresponding value in ψ
will be higher. Meanwhile, if a point in search feature is
more similar with the total template feature in PCW-XCorr
module, its corresponding value in ψ will be higher. There-
fore, the correlation feature ψ could also be considered as
a weighted feature for the search feature. For this reason,
we multiply ψ with the search features ϕ(x) to obtain the
final weighted search feature ϕ(x)�, which will be the input of
the next subnetwork. The distribution of ϕ(x)� becomes similar
to that of ϕ(z) after weighting. The more similar features are
up-weighted and the others are down-weighted. An example
of this process is shown in Fig. 3.

B. Region Proposal Subnetwork
In order to obtain more accurate target position prediction,

the tracker needs to predict the 3D bounding box of the target
object. The 3D bounding box could be represented as (x, y, z,
w, h, l, ry) in LIDAR coordinate, where (x, y, z) is the location
of object center, (w, h, l) is the size of object, ry is the heading
angle of the object from BEV. Therefore, the tracker should
accurately predict these 7 values for successful tracking. It is
obvious that the search dimension of 3D object tracking is
much higher than 2D tracking, which poses great challenges
for real-time tracking. In order to generate predicted box based
on the fusion features, we consider to use 3D detector methods
to regress 3D bounding box. As mentioned in [47], one-stage
detection methods do not need region proposal generation

Fig. 3. Feature examples. (a) The template feature ϕ(z). (b) The original
extracted search feature ϕ(x). (c) The correlation feature ψ. (d) The final
weighted search feature ϕ(x)�. After multiply with the cross correlation
feature, the distribution of the search feature is similar to that of the
template feature.

and post-precessing, such as VoxelNet [48], SECOND [49].
Two-stage detection methods first propose coarse regions that
may include objects and then estimate bounding boxes, such as
PointRCNN [50], FVNet [51]. The one-stage detection tends
to be faster and simpler, while the two-stage detection tends to
achieve higher precision. In this paper, we not only focus on
the high running speed for realistic application, but also need
to pay more attention to accurate performance, to achieve the
balance between speed and accuracy for real-scene application.
Therefore, we use a modified Region Proposal Network(RPN)
proposed in PointRCNN [50] to obtain the final 3D bounding
box of the target object. In that work, points inside the 3D
label boxes are considered as foreground points and others
are background points. Each point generates one proposal to
avoid using too many anchor boxes. In our work, in order
to reduce the computational burden, we input the RPN with
the final weighted search feature ϕ(x)� to generate proposals
and scores. The region proposal subnetwork consists of a
classification branch and a proposal generation branch. The
classification branch is for foreground-background point clas-
sification and the regression branch is for bin-based 3D
proposal generation. We introduce these two parts in detail
in the remainder of this section.

1) Foreground Point Classification: The foreground points
provide rich information about the location and direction
of its associated objects. By distinguishing the point cloud
into foreground and background points, a small number of
high-quality 3D proposals could be generated directly rather
than using a large number of redundant 3D anchor boxes.
Meanwhile, we could effectively constrain the search space for
3D proposal generation. In the foreground point classification
block, we use two 1D-convolutional layers with filter size
[128,1] to get the point-wise classification results based on the
weighted search feature ϕ(x)�. We assign a binary class label
(of being foreground point or not) to each point. We assign a
positive (set as 1) label to the point inside the 3D label boxes,
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i.e. foreground points, and a negative (set as -1) label to the
point that is not in the 3D label boxes, i.e. background points.
The number of foreground points is usually much smaller
than that of background points in large-scale outdoor scene.
Therefore, we use focal length loss [52] to balance the two
classes.

L f ocal(pt) = −αt (1 − pt)
γ log(pt) (3)

where pt =
{

p i f label = 1

1 − p otherwi se
(4)

where p ∈ [0, 1] is the points’ estimated probability for
the class with label = 1, pt is the classification probability
of different classes, αt ∈ [0, 1] is a weighting factor for
addressing class imbalance, γ ∈ [0, 5] is a tunable focusing
parameter for reducing the relative loss for well-classified
examples( pt > .5). During the point classification training,
we set αt = 0.25 and γ = 2 as the original paper.

2) Bin-Based 3D Proposal Generation: In this section,
we first generate bin-based 3D object proposal boxes, and then
regress object location based on these proposals. Note that the
proposal box generation is done as the foreground point clas-
sification at the same time. After generating proposal boxes,
we need to regress it to obtain the accurate object location.
In regression block, we use two 1D-convolutional layers with
filter size [128,7] to get the point-wise regression results based
on the weighted search feature ϕ(x)�. The dimension of the
network regression result is B × N ×C , where B is data batch
size, N is the number of point cloud, and C is determined
by the partition number of (x, y, z, w, h, l, ry), which we
would mention it below. To have a more accurate bounding
box prediction, we use the bin-based regression loss proposed
in [50] to estimate the coordinates of target object. The main
idea of bin-based regression loss is to subdivide the region
around the foreground points along each coordinate axes. The
search area is divided into a series of bins along the X,Y, Z
axes. Specially, a search range S is set for each current
foreground point along each axis, and is divided into bins of
uniform length l. Similarly, the orientation 2π is also divided
into n bins. For the bin-based regression, the reg layer would
estimate a confidence probability and a residual value. The
probability is utilized to obtain which bin the point belongs
to and the residual is added to refine the final values. Fig. 4
shows the bin-based bounding box localization. To estimate
the size of the target object (w, h, l), we directly regress their
residual value since their values are within a small range.

The localization loss consists of two parts, one for bin
classification of x, y, z, θ , and the other for residual regression
based on bin classification. In the process of locating the
bounding box of the target object, the location is estimated
roughly by bin classification first, and then the result of
residual regression is added to the bin classification to realize
further localization. Therefore, the location of target object
could be formulated as following [50]:

bini
u = ut − ui + S

l
(5)

resi
u = 1

C
(ut − ui + S − (bini

u ∗ l + l

2
)) (6)

Fig. 4. The example of bin-based bounding box localization. The
surrounding area along every coordinate axes of each foreground point
is divided into a series of bins to locate the object center.

where u ∈ x, y, z, θ , ut is the center coordinates of the target
object, ui is the coordinate of the input i th point. l is the
uniform length of bins divided by the search range S. bini

u
is the ground-truth bin classification along X , Y and Z axis,
resi

u is the refined ground-truth residual for further localizing
the target bounding box, C is the bin length for normalization.

C. Loss Function
The overall loss includes classification and regression terms.

We use the focal loss in classification branch. Meanwhile,
we follow the regression loss of [50] which includes the bin
classification and residual regression terms. The regression
loss Lreg could be formulated as follows:

Li
bin =

∑
(Fcls ( ¯bini

u, bini
u)+ Freg( ¯resi

u, resi
u)) (7)

Li
res =

∑
Freg( ¯resi

v , resi
v ) (8)

Lreg = 1

Npos

∑
(Li

res + Li
bin) (9)

where u ∈ x, y, z,, v ∈ w, h, l, Npos is the number of positive
samples, ¯bini

u and ¯resi
u are the predicted bin classification and

residuals corresponding to the foreground point p, bini
u and

resi
u are the ground-truth targets calculated as above. We use

the smooth L1 loss as Freg and the cross-entropy loss as Fcls .
The training loss could be formulated as:

L =
∑

Lcls + λ
∑

Lreg (10)

where λ is the balance weight for Lreg .

IV. EXPERIMENTS

We evaluate our 3D-SiamRPN method on challenging
3D object tracking benchmark of KITTI [53] dataset and
Honda Research Institute 3D Dataset (H3D) [54] dataset.
We first carried out rigid object (car) tracking and non-rigid
object (pedestrian) tracking experiments on KITTI dataset.
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Then, we tested our method (trained on KITTI data) on H3D
dataset without re-training. Experimental results show that the
proposed method has good class-agnostic tracking ability and
generalization ability. The results also show that our method
could achieve a competitive performance in both Success
and Precision compared to the state-of-the-art methods while
running in real-time around 20.8 FPS. Our experiment video
is available at https://youtu.be/xy6Dh2LseRQ.

A. Dataset
1) KITTI: We use the training set of KITTI tracking bench-

mark in our experiments. It includes more than 20,000 man-
ually labeled 3D objects captured in cluttered scenes using
Velodyne HDL-64E 3D LiDAR (10 HZ). For all following
experiments, we focus on vehicle and person tracking since
they are the main classes in the KITTI dataset. Besides, they
also represent rigid object and non-rigid object respectively.
We split the sequences of KITTI following [9]: Sequences 0-16
and 17-18 are used for training and validation respectively in
training stage. Sequences 19-20 are used for testing in the
inference stage.

2) H3D: Recently, Patil et al. [54] presented H3D dataset to
provide sufficient data and labels to tackle challenging scenes
where highly interactive and occluded traffic participants are
presented. H3D comprises of 160 crowded and highly inter-
active traffic scenes with a total of 1 million labeled instances
in 27,721 frames. Unlike KITTI dataset where 3D object
annotations are only labeled in the frontal view, 3D objects in
the h3d dataset are labeled in the full-surround view, as shown
in Fig. 16. Therefore, the target object may disappear for some
frames and appear again later. Meanwhile, the H3D dataset is
collected from crowded urban scenes and is more complex
than KITTI dataset. Thus, it is more difficult than KITTI
dataset for 3D object tracking. In our experiments, we test
our proposed method on scenario 011, 018, 022, 045 and
050 sequences in H3D dataset, which includes more than
120 tracking instances.

B. Implementation Details
1) Network Architecture: For the feature extraction network,

we use four set-abstraction layers with multi-scale grouping
to sub-sample points into groups with sizes 500, 318, 256,
64, and utilize four feature propagation layers to obtain
point-wise feature. Notably, the template point cloud feature
is frozen after initialization and would not be updated. In the
region proposal subnetwork, we use two one-dimensional
convolutional layers for both cls and reg layers to predict
the foreground-background point classification and the target
object location. In the classification branch, we employ two
convolutional layers sequentially as Conv1D(128,128,1,1,0)
and Conv1D(128,1,1,1,0). In the regression branch, we use two
convolutional layers sequentially as Conv1D(128,128,1,1,0)
and Conv1D(128,7,1,1,0). In order to prevent over-fitting of
the model, we insert a Dropout layer(p = 0.5) between the
two convolution layers of both branches.

2) Training Detail: In the training stage, the training point
cloud data is obtained by reading the bounding box ground

truth(GT) of target objects in all sequences. Meanwhile,
in order to improve the robustness of the network, the bound-
ing box are enlarged to bring in some noises. We randomly
select a pair of point clouds training from point cloud data
as template point cloud and search point cloud. Then we
randomly re-sample both template and search point clouds to
a fixed size, which could be used as the network input. For a
point cloud including N points, the bin-based RPN generates
N proposals. We use all of the proposals which the corre-
sponding class belongs to the foreground point. The number
of points on network input is N = 500. We use fixed-size
anchors according to the mean sizes of all ground truths in
the KITTI training set. Anchor is considered as positive if its
corresponding point is the foreground point. We follow the
setting of the bin-based proposal generation [50], the search
range S along X, Z axes are set to 3m, S along Y axis is set
to 0.5m, the bin size l along X, Z axes are set to 0.5m while
along Y axis is 0.25m. The number of orientation bin n is 12.
The balance weight λ is set to 10. In training setting, we use
the Adam optimizer with an initial learning rate of 0.002 and
a batch size of 10 for 50 epochs. All training process are
implemented with a Nvidia 1080ti GPU and Pytorch. In the
tracking experiments, the proposed method was implemented
in ROS Kinetic framework running on Ubuntu16.04 LTS and
Intel Core E-2288G CPU. All coordinates are based on our
Velodyne coordinate system.

3) Model Inference: In the inference stage, we initialize the
template branch by reading 3D bounding box GT of first
frame of target trajectory. The first search area is obtained by
enlarging the bounding box of the first frame, and then we crop
the point cloud in this search area from the next frame to input
search branch. After model inference, we get 500 proposals
with different classification scores. We first select the top
100 proposals with the highest score, then use Non-Maximum
Suppression(NMS) with IoU threshold 0.8 to filter those
100 proposals, and use the proposal with the highest score
as the final predicted box of the target in the next frame.
Finally, the subsequent search areas are updated by enlarging
the predicted box. Details of the enlarging search range based
on predicted boxes could be found in Fig. 8 and 12.

C. Evaluation Metrics
We report the Success and Precision metrics defined by One

Pass Evaluation (OPE) [55] for Single Object Tracking, which
represent overlap and error Area Under the Curve (AUC)
respectively.

D. 3D Single Rigid Object (Car) Tracking on KITTI
For rigid object (car) tracking, in order to evaluate the

performance of our method and discuss the selection of
suitable parameters, we carried out 5 different experiments
on KITTI dataset. In the first experiment, we qualitatively
analyze the performance of our method in several challeng-
ing scenes. The challenging scenes include crowded scenes,
extremely sparse scenes and turning scenes. In the second
experiment, we quantitatively evaluate the performance of
our method. We compare the Success and Precision with the
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TABLE I
EVALUATION RESULTS OF CAR TRACKING ON KITTI

Fig. 5. The example of car tracking in a crowded scene where the target
vehicle ID is 42 in sequence 19 of KITTI dataset. The blue box is the
target object. In this scenario, approximately 14 pedestrians are moving
in an area of 20m2 in front of the tracked car.

Fig. 6. The example of car tracking in an extremely sparse scene where
the target car ID is 42 in sequence 19 of KITTI dataset. The blue box
is the target object. In this scenario, when the relative distance is about
52m, the number of points for target car point clouds is only about 10.
When the relative distance is about 40m, the number of points for target
car point clouds is about 36.

state-of-the-art methods. In the third experiment, we quan-
titatively evaluate the performance differences between our
cross-correlation modules (PCW-Xcorr, PW-Xcorr) and other
commonly used cross-correlation modules. In the fourth exper-
iment, we test the effect of the search range on the performance
of the method, because different search area results in different
updated search point clouds. In the fifth experiment, we ana-
lyze the effect of different weight coefficient on the tracking
performance.

1) 3D Car Tracking in Challenging Scenes: The tracking
performance of the proposed method for car tracking on the
KITTI dataset is shown in Fig. 5, Fig. 6 and Fig. 7, where the
blue bounding box is the target car. In Fig. 5, the proposed

Fig. 7. The example of car tracking in a turning scene where the target car
ID is 97 in sequence 20 of KITTI dataset. The blue box is the target object.
In this scenario, the angular velocity of LIDAR is approximately 5◦/s.

method can track a car effectively in a crowded pedestrian
scene. In this scenario, approximately 14 pedestrians were
walking in an area of 20m2 in front of the target car. As we
can see from Fig. 5, most of the point cloud of the car are
occluded by the pedestrians. Since there are many pedestrians
around the target car, it will introduce the point cloud of
pedestrians into the search point cloud when updating the
search point cloud of the car. However, our method could still
effectively track the target car. In Fig. 6, our method has good
tracking performance even in a sparse scene. In this scenario,
the number of points for target car point clouds is only
10 when the relative distance is about 52m, and the number of
points for target car point clouds is only 36 when the relative
distance is about 40m. Even the target car has extremely
sparse point clouds, our method could still effectively track it.
In Fig. 7, our method could track the target car in a turning
scene successfully. In this scenario, the angular velocity of
LIDAR is approximately 5◦/s.

2) Evaluation of 3D Car Tracking: As shown in Table I, our
proposed methods both surpass the SC3D-KF [9], 3D Siamese-
2D proposal(top-16) [11] in all metrics. Notably, although
SC3D-EX [9] has better performance than other methods in
all metrics, their method is unreasonable because it updated
search area based on the bounding box ground truth(GT) of
current frame. However, it is difficult to obtain the GT of
each frame for target object in real scene implementation.
Besides, our method outperforms the P2B [12] in all metrics,
which is a state-of-the-art method for 3D object tracking.
Meanwhile, compared to AVOD Tracking [32] which utilized
a RGB+LIDAR detector, our proposed tracker with PW-Xcorr
performs better by a large margin of 5.29%, 5.56% and 9.71%
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TABLE II
PERFORMANCE FOR DIFFERENT MODULES OF CAR ON KITTI

TABLE III
CAR TRACKING PERFORMANCE FOR DIFFERENT WEIGHTS ON KITTI

in 3D Precision, BEV Success and BEV Precision respectively.
It verifies the shortcoming of heavy reliance on the front-end
detector of tracking-by-detection methods and proves that the
3D bounding box obtained directly by our tracker could be
better than that by RGB+LIDAR detector. More importantly,
compared with other methods, our proposed methods could
run in real time. This is because we could freeze the template
branch without updating it according to the common manner
in the existing visual object tracking works [26], [28], [30],
and the network will have less computational burden and
obtain a faster running speed. The proposed PCW-XCorr and
PW-XCorr trackers could achieve 16.7 FPS and 20.8 FPS
respectively. Our methods achieve the state-of-the-art perfor-
mance among the real-time single object tracking algorithms.
In other words, our method has a good balance between speed
and accuracy.

3) Cross Correlation Module Ablation Studies for 3D Car
Tracking: In Sec.III-A.2, we introduced two types of cross
correlation modules. Here, we compare them with the most
widely used cosine and euclidean similarity methods. Mean-
while, we compare them with the depth-wise cross correlation
(DW-XCorr) [28], which has a good performance in visual
tracking. Additionally, in order to compare the effect of the
cross correlation module in our method, we remove the cross
correlation module and directly put the search feature into
the RPN. Table II reports the results of the comparison.
As the results show, the two proposed modules outperform the
other three modules in four metrics, and the proposed mod-
ule PW-XCorr performs better than the others. Meanwhile,
compared to other modules, the network without similarity
module performs worse by a large margin from 10.19% to
18.57% on Success and Precision metrics. This verifies that
it is necessary to take template features into account to get
the correlation features. The results show that our proposed
modules have better performance than cosine and euclidean
similarity modules. Meanwhile, PW-XCorr performs better
than DW-XCorr by 4.27%, 4.44%, 1.85% and 4.14% on
3D/BEV Success and Precision respectively. The results also
show that our proposed modules are better than DW-XCorr

Fig. 8. The curves of three metrics with the distance of search area
increasing of car.

module, and also verify that our proposed modules are more
suitable for point cloud tracking. Additionally, compared to
other modules, the PW-XCorr module has a faster running
speed.

4) Range of Search Area for 3D Car Tracking: Different
search area results in different search point clouds. On one
hand, choosing the appropriate search area can properly intro-
duce noise and improve the robustness of the tracking system.
On the other hand, the search area can also contain the possible
position of the object in the next frame, which is beneficial for
object tracking. Therefore, the range of D is important to the
tracking results. In this part, we evaluate the performance when
using different ranges of D, from 0.5m to 2m. Since the values
along Y axis (height in the vertical direction) changes little,
we do not change the range on Y axis but only on X and Z
axis. As Fig. 8 shows, D = 1.0m has the best performance in
our proposed methods. We speculate that there are two reasons.
First, there are no enough points in search point clouds that
represent the target object if D is too small. Second, too large
D will introduce too many noisy points from other objects
into the search point clouds, which results in the degradation
of the tracking performance.

5) Range of Weight Coefficient for 3D Car Tracking: Dif-
ferent weight coefficient λ also leads to different ratio of
classification and regression in loss function. In this part,
we evaluate the tracking performance of PW-Xcorr tracker by
using different weight coefficients λ from 0.1 to 20, and find
the most suitable weight coefficient value. Table III reports
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Fig. 9. The example of pedestrian tracking in a crowded scene where
the target person ID is 38 in sequence 19 of KITTI dataset. The blue box
is the target object. In this scenario, approximately 14 pedestrians are
moving in an area of 20m2.

the car tracking results of the different weight coefficient on
KITTI. As it shows, λ = 10 results in the best overall tracking
performance in our method.

E. 3D Single Non-Rigid Object (Pedestrian) Tracking on
KITTI

Pedestrian and car tracking are quite different. First, a car
belongs to rigid object and its point cloud feature is stable,
such as the square vehicle body, round tires and other intrinsic
features of cars. However, the pedestrian’s point cloud feature
representation is unstable, such as different arm or leg posture,
resulting in various feature representation. Second, a pedes-
trian tends to be much smaller than cars in the real world.
Because of the size difference between pedestrians and cars,
the point cloud representation of pedestrians is sparser than
cars at the same detection distance. For those reasons, it is
more challenging to extract stable features and track non-rigid
objects (pedestrian) than rigid objects (car).

The previous pedestrian tracking work usually depends on
the trained classifier [57], [58] to detect the object if their
shape have changed, but did not focus on the tracker to solve
this problem. However, our method could track pedestrian in
an end-to-end manner and take into consideration of the shape
deformations that occurs when a person is walking. In order to
evaluate the performance of our method for non-rigid object
(pedestrian), we carried out 5 different experiments on KITTI
dataset. In the first experiment, we qualitatively analyze the
performance of our method in several challenging scenes.
The challenging scenes include crowded scenes, occluded
scenes and rotating scenes, where rotating scenes are scenes
in which target object is rotating around the LIDAR sensor.
In the second experiment, we quantitatively evaluate the per-
formance of our method. In the third experiment, we compare
the performance differences between our cross-correlation
modules (PCW-Xcorr, PW-Xcorr) and other commonly used
cross-correlation modules. In the fourth experiment, we test
the effect of the search range on the performance of the
method. In the fifth experiment, we analyze the effect of
different weight coefficient on the tracking performance.

1) 3D Pedestrian Tracking in Challenging Scenes: The track-
ing performance of the proposed method for pedestrian
tracking on the KITTI dataset is shown in Fig. 9, Fig. 10 and

Fig. 10. The example of pedestrian tracking in an occluded scene where
the target person ID is 1 in sequence 19 of KITTI dataset. The blue box is
the target object. When the relative distance is 10.2m, the occlusion rate
is 68%. When the relative distance is 5.8m, the occlusion rate is 54%.

Fig. 11. The example of pedestrian tracking in a rotating scene where
the target person ID is 86 in sequence 19 of KITTI dataset. The blue box
is the target object. In this scenario, the angular velocity of the pedestrian
is approximately 3.7◦/s.

Fig. 11, where the blue bounding box is the target pedestrian.
In Fig. 9, the proposed method can track a pedestrian in a
crowded scene. In this scenario, approximately 14 pedestrians
were moving in an area of 20m2, so the search area will
introduce many noise point cloud from other pedestrians.
As shown in Fig. 10, when the pedestrian is at a distance
of 10.2m, the number of points in the target pedestrian point
cloud is only about 102. At the same distance, the number
of points in the point clouds for unoccluded pedestrian is
generally 320, meaning the occlusion rate is about 68%. When
the relative distance is 5.8m, the number of points in the target
pedestrian point cloud is 274. At the same distance, the number
of points in the point clouds for unoccluded pedestrian is
generally 600, meaning the occlusion rate is about 54%.
Fortunately, our method could still work well and cope with
the surrounding disturbance effectively. As shown in Fig. 10,
our methods still have good tracking performance even in an
occluded scene (watch our experiment video for more details).
Besides, in Fig. 11, it shows that our method could track target
pedestrian in a rotating scene. In such kind of scene, it is more
challenging for robust tracking since the relative movement of
the target between consecutive frames are usually bigger than
other scenes. In this experiment, the angular velocity of the
target pedestrian is approximately 3.7◦/s. Experiment results
show that our method could deal with such kind of scenario
robustly.
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TABLE IV
EVALUATION RESULTS OF 3D PEDESTRIAN TRACKING ON KITTI

TABLE V
PERFORMANCE FOR DIFFERENT MODULES OF 3D PEDESTRIAN ON KITTI

2) Evaluation of 3D Pedestrian Tracking: As shown in
Table IV, our proposed methods both surpass the 3D
Siamese-KF [9], 3D Siamese-2D proposal(top-16) [11] and
P2B [12] in all metrics. Meanwhile, compared to 3D Siamese-
2D proposal [11] method, our proposed tracker with PW-Xcorr
performs better by a large margin of 16.06% and 5.67%
on 3D Success and 3D Precision separately. Additionally,
our proposed methods could run in real time. The proposed
PCW-XCorr and PW-XCorr trackers achieve 16.1 FPS and
18.3 FPS respectively.

3) Cross Correlation Module Ablation Studies for 3D Pedes-
trian Tracking: Here, we compare them with the most widely
used cosine and euclidean similarity methods for non-rigid
(pedestrian) tracking. Additionally, we also compare them
with the depth-wise cross correlation (DW-XCorr) [28]. Mean-
while, we test whether the removal of the cross correlation
module affects the non-rigid object tracking performance.
The results on KITTI are shown in Table V. The proposed
module PW-XCorr outperforms the others in three out of four
metrics. Similar to car tracking, the two proposed modules
outperform the other three modules. Meanwhile, compared
to PW-XCorr module, the network without similarity module
performs worse by a large margin of 14.63%, 19.24%, 22.89%
and 16.82% on 3D/BEV Success and Precision respectively.
Additionally, PW-Xcorr performs better than DW-XCorr [28]
by 4.21%, 5.96%, 4.38% and 4.11% on 3D/BEV Success
and Precision respectively. The results also show that our
proposed modules are better than DW-XCorr module for
non-rigid object tracking. However, compared to the vehicle
tracking, the overall performance of the pedestrian tracking
has decreased. We argue that the performance decline is due
to the non-rigid characteristics of a person. When a person is
walking, the change of limbs will result in the difference of
the extracted point cloud feature.

4) Range of Search Area for 3D Pedestrian Tracking: Unlike
car tracking, considering the non-rigid characteristics of a
person and the difference of moving range of a person versus
a vehicle in consecutive frames, we also need to evaluate the
performance when using different ranges of D, from 0.3m to

Fig. 12. The curves of three metrics with the distance of search area
increasing of pedestrian.

1m. As Fig. 12 shows, D = 0.5m has the best performance in
our proposed method. Based on the above results, we speculate
that there are two reasons. Similar to vehicle tracking, too
small search area will not have enough search point clouds,
while too large search area will introduce too much noises.
Additionally, we think this is because people have a smaller
moving range when walking, while our search range has
expanded by 0.5 meters in all directions between the two
frames. Therefore, the search box could not only contain point
cloud of the target in adjacent frames, but also bring in appro-
priate noisy points to improve the robustness of our method.

5) Range of Weight Coefficients for 3D Person Tracking:
As mentioned above, compared with rigid object tracking
(car), non-rigid object (pedestrian) tracking is more challeng-
ing. Due to the difference between rigid body tracking and
non-rigid body tracking, we still need to test the perfor-
mance of various weight coefficient on the tracking results.
As Table VI shown, the pedestrian tracking performance is
better than other coefficient value in three out of five metrics
when λ = 10. We can see that the coefficient for car tracking
is also applicable to pedestrian tracking.

F. Extensive Comparisons on KITTI
In this part, we further compared our method with P2B

and SC3D on Pedestrian, Van, and Cyclist(Table VII). All
methods adopt the same parameter setting. The template point
cloud is initialized with the point cloud of the first frame GT

Authorized licensed use limited to: Northeastern University. Downloaded on June 18,2023 at 09:13:30 UTC from IEEE Xplore.  Restrictions apply. 



FANG et al.: 3D-SiamRPN: AN END-TO-END LEARNING METHOD FOR REAL-TIME 3D SOT USING RAW POINT CLOUD 5007

TABLE VI
PERSON TRACKING PERFORMANCE FOR DIFFERENT WEIGHTS ON KITTI

TABLE VII
DETAILS OF EXTENSIVE COMPARISONS WITH SC3D AND P2B ON KITTI

TABLE VIII
DIFFERENT WAYS FOR TEMPLATE GENERATION AND SIZE INFORMATION GENERATION

and is updated by fusing the point cloud of first frame GT
with previous result. The search point cloud is updated based
on the point cloud of previous result, which better suits the
requirement of real scenes. Our method outperforms P2B and
SC3D by ∼4% and ∼15% on average. Generally, our method
has better performance in the mean 3D Success/Precision in
various target object categories. However, the performance of
our method is decreased for Van and Cyclist. And P2B also
has the same problems. We think the reason is that our method
relies on more data for more accurate similarity calculation and
stable feature learning.

G. Ablation Study for Template Generation and Different
Source of Size Information

In this ablation study, we analyze the effect of different
template point cloud generation methods and different size
information generation methods on tracking performance. For
template generation, we follow the 2D visual tracking meth-
ods [22], [26], [27], [30] to freeze and no longer update
the template point cloud with the first GT in our method.
However, inspired from P2B [12], we can update template by
concatenating the point cloud within the first GT and previous
result. Here, we reported results with two settings for template
generation: the first GT(our default setting) and the fusion of
the first GT and previous result’s point clouds(P2B default

setting). Results in Table VIII show that the performance of
our method only slightly improved ∼1% after updating the
template point cloud. However, the running speed of our
method will decrease from 20.8 FPS to 11.3 FPS. We think that
there may be two reasons. First, most targets move from near
to far due to the characteristics of KITTI dataset. Therefore,
the number of the first GT’s point clouds is more, and the
feature representation of target is rich enough, so it is no
longer necessary to fuse the previous results. Second, for some
bad tracking results, if they are fused into the template point
cloud, too much noise will be introduced into the template,
which will affect the performance of our method. Meanwhile,
when we update template, the running time of our method will
drop from 20 FPS to 11 FPS. Because we need to recalculate
the template features in every frame. Besides, P2B and SC3D
use the object’s GT size information(w,h,l) because they did
not predict the size information of the target. However, our
method predicts the size information of the target, because
this information is very important in real-scene applications.
When we use the size information of the GT, the performance
of our method improves ∼6%. This is because the regression
target of our model during training is the mean size value of
all vehicles. Therefore, the predicted size information is not
accurate enough. However, our method is more suitable for
real-scene applications.
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Fig. 13. The example of car tracking in an extremely sparse scene where
the target vehicle ID is 21 in scenario 11 of H3D dataset. The blue box
is the target object. In this scenario, when the relative distance is about
49m, the number of points for target car point clouds is only about 12.
When the relative distance is about 39m, the number of points for target
car point clouds is about 29.

H. 3D Single Object Tracking on H3D
As mentioned before, H3D is collected from crowded

urban environments and is more complex and challenging
than the simple scenes of KITTI dataset. Unlike 3D object
annotations are labeled in the frontal view on KITTI, 3D
objects in H3D dataset are labeled in the full surround scene.
Therefore, this dataset is very different from KITTI dataset.
Here, we use H3D dataset to test our approach with models
trained on KITTI dataset to verify the generalization ability of
the proposed method. We carried out 2 different experiments
on H3D dataset. In the first experiment, we qualitatively
analyze the performance of our method in several challenging
scenes for rigid object (car) and non-rigid object (pedes-
trian) tracking. In the second experiment, we quantitatively
evaluate the performance of our method. The challenging
scenes include extremely sparse scenes, occluded scenes and
turning scenes. In sparse and occluded scenes, because the
point cloud of the target is extremely sparse or occluded by
other objects, which would lead to incomplete point cloud
representation of the target, thus bringing great challenges for
network to discriminate and track. In turning scenes, it is more
challenging for robust tracking since the relative movement of
the target between consecutive frames are usually bigger than
other scenes. Therefore, we chose these scenarios to test the
robustness of our method.

1) 3D Car and Pedestrian Tracking in Challenging Scenes:
The qualitative tracking performance of our method for car
tracking on the H3D dataset is shown in Fig. 13, Fig. 14 and
Fig. 15, where the blue bounding box is the target car. For
extremely sparse scenes, as shown in Fig. 13, the number of
points for target car point clouds is only 12 when the relative
distance is about 49m. Even the target car has extremely
sparse point clouds, our method could still track it robustly.
For occluded scenes, as shown in Fig. 14, most of the point
clouds of the target car are occluded by other cars, which
would lead to incomplete point cloud representation for the
target, thus making it more difficult to match with the template
point clouds. In Fig. 14, when the relative distance is 28m,
the number of points in the target car point cloud is 127.

Fig. 14. The example of car tracking in an occluded scene where the
target car ID is 26 in scenario 11 of H3D dataset. The blue box is the
target object. In this scenario, when the relative distance is about 28m,
the occlusion rate is 59%. When the relative distance is about 23m,
the occlusion rate is 56%.

Fig. 15. The example of car tracking in a turning scene where the
target car ID is 89 in scenario 11 of H3D dataset. The blue box is
the target object. In this scenario, the angular velocity of LIDAR is
approximately 9.7◦/s.

At the same distance, the number of points in the point
clouds for unoccluded car is generally 310, meaning the
occlusion rate is about 59%. However, our method could still
effectively track the target car even in such a scene. For
turning scenes, as shown in In Fig. 15, the angular velocity
of LIDAR is approximately 9.7◦/s. Our method could track
the target car in a turning scene successfully. The qualitative
tracking performance of our method for pedestrian tracking
on the H3D dataset is shown in Fig. 16, Fig. 17 and Fig. 18,
where the blue bounding box is the target pedestrian. For
extremely sparse scenes, as shown in Fig. 16, the number
of points for target pedestrian point clouds is only 25 when
the relative distance is about 38m. Our method could still
track a pedestrian in such sparse scenes. For occluded scenes,
as shown in Fig. 17, when the pedestrian is at a distance
of 20m, the number of points for target pedestrian point
cloud is only 21. At the same distance, the number of
points for unoccluded pedestrian is generally 104, meaning
the occlusion rate is about 80%. However, our method could
effectively track the target pedestrian robustly. For turning
scenes, as shown in In Fig. 18, the angular velocity of
LIDAR is approximately 9.7◦/s. Our method could track
target pedestrian in a turning scene. Experiment results show
that the model trained on KITTI dataset could track targets
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Fig. 16. The example of pedestrian tracking in an extremely sparse
scene where the target pedestrian ID is 14 in scenario 11 of H3D dataset.
The blue box is the target object. In this scenario, when the relative
distance is about 38m, the number of points for target pedestrian is only
about 25. When the relative distance is about 30m, the number of points
for target pedestrian is about 37.

Fig. 17. The example of pedestrian tracking in an occluded scene where
the target person ID is 87 in scenario 11 of H3D dataset. In this scenario,
when the relative distance is about 20m, the occlusion rate is 80%.

Fig. 18. The example of pedestrian tracking in a turning scene where
the target person ID is 107 in scenario 11 of H3D dataset. The blue box
is the target object. In this scenario, the angular velocity of LIDAR is
approximately 9.7◦/s.

robustly in the above challenging scenarios, showing the good
robustness.

2) Evaluation of 3D Car and Pedestrian Tracking on H3D:
For car tracking, as shown in Table IX, since the target
object may disappear for a while and the sizes of cars are
different in the two datasets, the evaluation results have a
decline compared to that on KITTI. For pedestrian tracking,

TABLE IX
DETAILS OF EVALUATION RESULTS OF CAR TRACKING ON H3D

TABLE X
DETAILS OF EVALUATION RESULTS OF

PEDESTRIAN TRACKING ON H3D

TABLE XI
RUNNING TIME OF DIFFERENT METHODS FOR CAR

as shown in Table X, even the tracking performance reduces
a bit, the proposed methods can still work effectively in an
untrained new environment. It should be noted that the network
models were trained on KITTI dataset and we did not train it
using any sequences from H3D dataset. However, the proposed
methods still have good performances. The results show that
the proposed methods have good generalization ability on
different datasets.

I. Running Speed
Here we calculate the average running time of all test frames

for car to measure the speed of our method, and compare it
with P2B and SC3D. As shown in Table XI, 3D-SiamRPN
achieved 20.8FPS with PW-Xcorr module, including 0.48ms
for cropping point cloud, 40.27ms for network forward propa-
gation and 7.2ms for post-processing, on a Nvidia 1080ti GPU.
P2B and SC3D both used Kalman Filter to generate search
space of candidates, and their running speeds are 45 FPS and
2.2 FPS respectively. Notably, we found that our method takes
a shorter time(0.5ms) in data pre-process, while P2B(7ms)
and SC3D(420ms) both take a longer time because they need
to generate potential object proposals from the search space.
Especially for SC3D, they generate 147 proposals, resulting
in a longer time consuming. Besides, our method takes a
longer running time in model inference. Although we use
the same backbone network as P2B for point cloud feature
extraction, our network is different from P2B. We used Feature
Propagation(FP) layer in PointNet++ [14] because it focuses
more on the global semantic feature of point cloud, while P2B
does not use it. We think this is the reason why our method
performs better than P2B. In our method, each part of our
network takes the following time during the inference stage:
point cloud feature extraction takes 36.3ms, feature fusion
takes 1.7ms and RPN network takes 2ms.
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V. CONCLUSION

In this paper, we proposed 3D-SiamRPN to solve 3D single
object real-time tracking problem, which does not rely on
the detector and directly obtains the 3D bounding box of the
target object by an end-to-end learning manner. Meanwhile,
we proposed two types of cross correlation modules for point
cloud features. The experimental results on different datasets
show that the proposed method is competitive with the state-
of-the-art methods in tracking rigid objects and non-rigid
objects. Meanwhile, the proposed modules PCW-XCorr and
PW-XCorr shows better performances than the other similarity
modules in 3D object tracking. Additionally, we demonstrate
the good generalization ability of our method by validating the
proposed method in a fully new dataset without re-training.
In the future, we plan to effectively fuse the good previous
tracking results to update the template point cloud and extend
our approach to multi-object tracking.
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